Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies

  • Jyoti Prakash DhalEmail author
  • Tapan Dash
  • Garudadhwaj HotaEmail author


Mesoporous MCM-41 and MCM-41 impregnated with structural iron (Fe–MCM-41) were prepared by a facile surfactant based wet chemical method using tetraethyl orthosilicate, cetyl trimethyl ammonium bromide in the presence of ammonium hydroxide and FeSO4·7H2O as impregnated reagent. The prepared mesoporous materials were characterized by small and wide angle X-ray diffraction (XRD), XPS, FESEM, HRTEM, FTIR and N2 gas adsorption/desorption isotherm techniques. The results indicate the formation of high surface area (1266 m2/g) porous structure with particle size in the range of 200–400 nm for MCM-41. In case of Fe–MCM-41 the surface area decreases (880 m2/g) substantially with formation of iron oxide nanoparticles in the frame work of MCM-41. The obtained mesoporous materials were used as adsorbents for the removal of methylene blue from aqueous media. The percentage removal of the dye was found to be 99.9% for Fe–MCM-41 and 94.5% for MCM-41, respectively, by using 20 mL of dye solution with initial concentration of 100 mg/L and 0.05 g of each adsorbent. The maximum adsorption capacity of Fe–MCM-41 was found to be 194 mg/g and for MCM-41, it was 149.5 mg/g. This result suggests that the prepared Fe–MCM-41 is an effective adsorbent for decontamination of Methylene blue from aqueous media.


Mesoporous materials MCM-41 Fe–MCM-41 Adsorption Methylene blue 



The authors would like to thank NIT Rourkela for providing the research facility and funding to carry out this work.


  1. 1.
    P. Solanki, A. Patel, J. Porous Mater. (2019). Google Scholar
  2. 2.
    Z. Huang, H. Miao, J. Li, J. Wei, S. Kawi, M.W. Lai, Sep. Purif. Technol. 118, 170–178 (2013)CrossRefGoogle Scholar
  3. 3.
    H.R. Pouretedal, M. Ahmad, Int. Nano Lett. 2, 10 (2012)CrossRefGoogle Scholar
  4. 4.
    E. Boccardi, L. Liverani, A.M. Beltrán, R. Günther, J. Schmidt, W. Peukert, A.R. Boccaccini, J. Porous Mater. 26, 443–453 (2019). CrossRefGoogle Scholar
  5. 5.
    D.O. Santos, M.L.N. Santos, J.A.S. Costa, R.A. de Jesus, S. Navickiene, E.M. Sussuchi, M.E. de Mesquita, Environ. Sci. Pollut. Res. 20, 5028–5035 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, J. Colloid Interface Sci. 404, 42–48 (2013)CrossRefGoogle Scholar
  7. 7.
    K.M. Parida, S.K. Dash, J. Hazard. Mater. 179, 642–649 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Rath, K.M. Parida, Ind. Eng. Chem. Res. 50, 2839–2849 (2011)CrossRefGoogle Scholar
  9. 9.
    V. Elías, E. Vaschetto, K. Sapag, M. Olivac, S. Casuscelli, G. Eimer, Catal. Today 172, 58–65 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Li, H. Yu, Y. He, X. Xue, J. Anal. Methods Chem. (2012). Google Scholar
  11. 11.
    B. Lan, R. Huang, L. Li, H. Yan, G. Liao, X. Wang, Q. Zhang, Chem. Eng. J. 219, 346–354 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Q. Zhang, T. Shishido, K. Takehira, J. Catal. 209, 186–196 (2002)CrossRefGoogle Scholar
  13. 13.
    J.F. Bengoa, N.A. Fellenz, M.V. Cagnoli, L.A. Cano, N.G. Gallegos, A.M. Alvarez, S.G. Marchetti, Hyperfine Interact. 195, 5–13 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Chen, K.F. Lam, K.L. Yeung, Chem. Eng. J. 172, 728–734 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Wantala, S. Sthiannopkao, B. Srinameb, N. Grisdanurak, K.W. Kim, Environ. Geochem. Health 32, 261–266 (2010)CrossRefGoogle Scholar
  16. 16.
    B. Li, K. Wu, T. Yuan, C. Han, J. Xu, X. Pang, Microporous Mesoporous Mater. 151, 277–281 (2012)CrossRefGoogle Scholar
  17. 17.
    Q. Zhao, Y. Li, X. Zhou, T. Jiang, C. Li, H. Yin, Superlattice Microstruct. 47, 432–441 (2010)CrossRefGoogle Scholar
  18. 18.
    M.E.L. Preethia, T. Sivakumar, M. Palanichami, Catal. Commun. 11, 876–879 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Bachari, R. Chebout, R.M. Guerroudj, M. Lamouchi, J. Porous Mater. 19, 615–622 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Choi, S. Yoon, S. Jang, W. Ahn, Catal. Today 111, 280–287 (2006)CrossRefGoogle Scholar
  21. 21.
    D.Q. Khieu, D.T. Quang, T.D. Lam, N.H. Phu, J.H. Lee, J.S. Kim, J. Incl. Phenom. Macrocycl. Chem. 65, 73–81 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Jiang, K. Lin, Y. Zhang, J. Liu, G. Li, J. Sun, X. Xu, Appl. Catal. Gen. 445–446, 172–179 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Zhang, L. Chen, L. Li, Y. Yang, X. Liu, J. Porous Mater. 24, 341–353 (2016). CrossRefGoogle Scholar
  24. 24.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, RSC Adv. 5, 18438–18450 (2015)CrossRefGoogle Scholar
  25. 25.
    I. Ali, Z.A. Alothman, A. Alwarthan, J. Mol. Liq. 241, 123–129 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Yu, L. Gao, W. Wang, G. Zhang, J. Ji, J. Anal. Appl. Pyrolysis 104, 325–329 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Davoisne, H. Leroux, M. Frère, J. Gimblot, L. Gengembre, Z. Djouadi, V. Ferreiro, L. d’Hendecourt, A. Jones, Astron. Astrophys. 482, 541–548 (2008)CrossRefGoogle Scholar
  28. 28.
    A.I. Carrillo, E. Serrano, R. Luque, J. García-Martínez, Appl. Catal. Gen. 453, 383–390 (2013)CrossRefGoogle Scholar
  29. 29.
    A.D. Stefanis, S. Kaciulis, L. Pandolfi, Microporous Mesoporous Mater. 99, 140–148 (2007)CrossRefGoogle Scholar
  30. 30.
    X. Li, Q. Zhai, J. Iran. Chem. Soc. 8, S1–S8 (2011)CrossRefGoogle Scholar
  31. 31.
    E. Kaya, N. Oktar, G. Karakas, K. Murtezaoglu, Turk. J. Chem. 34, 935–943 (2010)Google Scholar
  32. 32.
    T.R. Gaydhankar, V. Samuel, P.N. Joshi, Mater. Lett. 60, 957–961 (2006)CrossRefGoogle Scholar
  33. 33.
    R. Huang, B. Lan, Z. Chen, H. Yan, Q. Zhang, J. Bing, L. Li, Chem. Eng. J. 180, 19–24 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Mahapatra, B.G. Mishra, G. Hota, Ceram. Int. 39, 5443–5451 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Chen, Y. Chen, G. Diao, J. Chem. Eng. Data 55, 5109–5116 (2010)CrossRefGoogle Scholar
  36. 36.
    F. Wang, J. Porous Mater. 25, 611–619 (2017). CrossRefGoogle Scholar
  37. 37.
    J. Ge, L. Liu, Y. Shen, J. Porous Mater. 24(3), 647–655 (2016). CrossRefGoogle Scholar
  38. 38.
    H.T.M. Thanh, N.T.T. Tu, N.P. Hung, T.N. Tuyen, T.X. Mau, D.Q. Khieu, J. Porous Mater. (2019). Google Scholar
  39. 39.
    S. Gao, L. Liu, Y. Tang, D. Jia, Z. Zhao, Y. Wang, J. Porous Mater. 23(4), 877–884 (2016). CrossRefGoogle Scholar
  40. 40.
    X. Zhang, J. Liu, S.J. Kelly, X. Huang, J. Liu, J. Mater. Chem. A 2, 11759–21176 (2014)CrossRefGoogle Scholar
  41. 41.
    Y. Li, Y. Zhou, W. Nie, L. Song, P. Chen, J Porous Mater 22, 1383–1392 (2015). CrossRefGoogle Scholar
  42. 42.
    Z. Gao, X. Li, H. Wu, S. Zhao, W. Deligeer, S. Asuha, Microporous Mesoporous Mater. 202, 1–7 (2015)CrossRefGoogle Scholar
  43. 43.
    Y.C. Sharma, Uma, J. Chem. Eng. Data 55, 435–439 (2010)CrossRefGoogle Scholar
  44. 44.
    Y. Li, Q. Du, T. Liu, J. Sun, Y. Wang, S. Wu, Carbohydr. Polym. 95, 501–507 (2013)CrossRefGoogle Scholar
  45. 45.
    P. Monash, G. Pugazhenthi, Korean J. Chem. Eng. 27, 1184–1191 (2010)CrossRefGoogle Scholar
  46. 46.
    X. Yang, X. Wang, X. Liu, Y. Zhang, W. Song, C. Shu, L. Jiang, J. Mater. Chem. A 1, 8332–8337 (2013)CrossRefGoogle Scholar
  47. 47.
    X. Fu, X. Chen, J. Wang, J. Liu, Microporous Mesoporous Mater. 139, 8–15 (2011)CrossRefGoogle Scholar
  48. 48.
    A. Kurniawan, H. Sutiono, Y. Ju, F.E. Soetaredjo, A. Ayucitra, A. Yudha, S. Ismadji, Microporous Mesoporous Mater. 142, 184–193 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Mohammadnejad, T. Hajiashrafi, R. Rashnavadi, J. Porous Mater. (2017). Google Scholar
  50. 50.
    F. Subhan, S. Aslam, Z. Yan, M. Khan, U.J. Etim, M. Naeem, J. Porous. Mater. (2019). Google Scholar
  51. 51.
    B. Ismail, S.T. Hussain, S. Akram, Chem. Eng. J. 219, 395–402 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Chem. Eng. J. 268, 28–37 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryCollege of Engineering and Technology (A Constituent and Autonomous College of Biju Patnaik University of Technology, Orissa)BhubaneswarIndia
  2. 2.Department of ChemistryNational Institute of TechnologyRourkelaIndia
  3. 3.Centurion University of Technology and ManagementOdishaIndia

Personalised recommendations