Efficiently removal of ciprofloxacin from aqueous solution by MIL-101(Cr)-HSO3: the enhanced electrostatic interaction

  • Zhengjie LiEmail author
  • Mengying Ma
  • Shanshan Zhang
  • Zhikun Zhang
  • Lilong Zhou
  • Jimmy YunEmail author
  • Runjing Liu


Metal–organic frameworks (MOFs) have been widely used to remove organic/toxic compounds from waste water. Ciprofloxacin (CIP) has been detected in surface and waste water, which is harmful to aquatic organisms and human body. Herein, MIL-101(Cr)-HSO3 was synthesized by solvothermal method and its structural features were characterized by XRD, SEM, FTIR, N2 adsorption–desorption analysis at 77 K and zeta potential. Then, the CIP adsorption performance of MIL-101(Cr)-HSO3 was investigated, in which the effect of adsorbent dosage, contact time, pH and ionic strength were explored. MIL-101(Cr)-HSO3 showed the highest adsorption capacity when the adsorbent dosage was 0.1 g/L and the pH was 8.0. The observation from the effects of pH and ionic strength suggested a stronger electrostatic interactions between CIP and MIL-101(Cr)-HSO3. The pseudo-second-order model fitted the adsorption kinetics data of MIL-101(Cr)-HSO3 well. Moreover, the equilibrium adsorption data of MIL-101(Cr)-HSO3 followed the Langmuir model, indicating a mono-layer adsorption of CIP onto surface of MIL-101(Cr)-HSO3. The calculated maximum CIP adsorption capacity from Langmuir model was 564.9 mg/g, which was higher than the reported materials. Besides, the equilibrium adsorption data were fitted to the Tempkin model with r2 = 0.9880, which also suggested a stronger electrostatic interaction between CIP and MIL-101(Cr)-HSO3. Finally, the introduced sulfonic acid group made the material more negatively charged on the surface, which benefited the adoption of CIP via stronger electrostatic interactions resulting the enhanced adsorption capacity of CIP. The results show that the MIL-101(Cr)-HSO3 is a promising candidate for removal of CIP and introducing proper functional groups on organic linker is a convenient way to obtain MOFs with better performance for a specific application.


Metal–organic frameworks Sulfonic acid group Ciprofloxacin Adsorption Electrostatic interaction 



This work was supported by Doctoral Scientific Research Foundation of Hebei University of Science and Technology (Nos. 1181342, 1181270, and 1181267), the Youth Fund of Education Department of Hebei Province (No. QN2019230), and Natural Science Foundation of Hebei Province Youth Project (No. B2019208333).

Supplementary material

10934_2019_802_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1736 kb)


  1. 1.
    L. Riaz, T. Mahmood, A. Khalid, A. Rashid, M.B.A. Siddique, A. Kamal, M.S. Coyne, Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil. Chemosphere 191, 704–720 (2018)CrossRefGoogle Scholar
  2. 2.
    I. Ebert, J. Bachmann, U. Kühnen, A. Küster, C. Kussatz, D. Maletzki, C. Schlüter, Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ. Toxicol. Chem. 30, 2786–2792 (2011)CrossRefGoogle Scholar
  3. 3.
    Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 49, 6772–6782 (2015)CrossRefGoogle Scholar
  4. 4.
    J.L. Liu, M.H. Wong, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ. Int. 59, 208–224 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: a review. J. Hazard. Mater. 262, 189–211 (2013)CrossRefGoogle Scholar
  6. 6.
    M.F. Li, Y.G. Liu, S.B. Liu, D. Shu, G.M. Zeng, X.J. Hu, X.F. Tan, L.H. Jiang, Z.L. Yan, X.X. Cai, Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms. Chem. Eng. J. 319, 219–228 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Li, C. Zeng, C. Wang, L. Zhang, Preparation of C@silica core/shell nanoparticles from ZIF-8 for efficient ciprofloxacin adsorption. Chem. Eng. J. 343, 645–653 (2018)CrossRefGoogle Scholar
  8. 8.
    X.V. Doorslaer, J. Dewulf, H.V. Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500–501, 250–269 (2014)CrossRefGoogle Scholar
  9. 9.
    E.S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 24, 1579–1586 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Luo, L. Xu, M. Rysz, Y. Wang, H. Zhang, P.J.J. Alvarez, Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe river basin, China. Environ. Sci. Technol. 45, 1827–1833 (2011)CrossRefGoogle Scholar
  11. 11.
    S.A.C. Carabineiro, T. Thavorn-amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 186, 29–34 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Feng, Z. Wang, D.D. Dionysiou, V.K. Sharma, Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J. Hazard. Mater. 344, 1136–1154 (2018)CrossRefGoogle Scholar
  13. 13.
    Z.W. Zhao, J.H. Zhao, C. Yang, Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system. Chem. Eng. J. 327, 481–489 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Bojer, J. Schöbel, T. Martin, M. Ertl, H. Schmalz, J. Breua, Clinical wastewater treatment: Photochemical removal of an anionic antibiotic (ciprofloxacin) by mesostructured high aspect ratio ZnO nanotubes. Appl. Catal. B 204, 561–565 (2017)CrossRefGoogle Scholar
  15. 15.
    T.S. Anirudhan, J.R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interf. Sci. 490, 343–356 (2017)CrossRefGoogle Scholar
  16. 16.
    M.H. Sui, S.H. Xing, L. Sheng, S.H. Huang, H.G. Guo, Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 227–228, 227–236 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Babić, M. Periša, I. Škorić, Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91, 1635–1642 (2009)Google Scholar
  18. 18.
    I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes. J. Membr. Sci. 309, 94–101 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour. Technol. 217, 239–244 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Li, Y. Liu, S. Liu, G. Zeng, X. Hu, X. Tan, L. Jiang, N. Liu, J. Wen, X. Liu, Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. J. Colloid Interface Sci. 521, 150–159 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 484, 196–204 (2016)CrossRefGoogle Scholar
  22. 22.
    M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532, 112–126 (2015)CrossRefGoogle Scholar
  23. 23.
    S.E. Moradi, A.M.H. Shabani, S. Dadfarnia, S. Emami, Effective removal of ciprofloxacin from aqueous solutions using magnetic metal-organic framework sorbents: mechanisms, isotherms and kinetics. J. Iran. Chem. Soc. 13, 1617–1628 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Wu, J. Ma, S. Li, J. Guan, B. Jiang, L. Wang, J. Li, X. Wang, L. Chen, Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 528, 360–371 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Wang, G. Li, L. Huang, J. Xue, Q. Liu, N. Bao, J. Huang, Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate. Ecotox. Environ. Safe. 139, 36–42 (2017)CrossRefGoogle Scholar
  26. 26.
    B. Zhang, X. Han, P. Gu, S. Fang, J. Bai, Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 238, 316–325 (2017)CrossRefGoogle Scholar
  27. 27.
    M.E.R. Jalil, M. Baschini, K. Sapag, Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl. Clay Sci. 114, 69–76 (2015)CrossRefGoogle Scholar
  28. 28.
    T.M. Berhane, J. Levy, M.P.S. Krekeler, N.D. Danielson, Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: effect of granule size, solution chemistry and temperature. Appl. Clay Sci. 132–133, 518–527 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 285, 588–595 (2016)CrossRefGoogle Scholar
  30. 30.
    J.A. González, J.G. Bafico, M.E. Villanueva, S.A. Giorgieri, G.J. Copello, Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr. Polym. 188, 213–220 (2018)CrossRefGoogle Scholar
  31. 31.
    J.G. Shang, X.R. Kong, L.L. He, W.H. Li, Q.J.H. Liao, Low-cost biochar derived from herbal residue: characterization and application for ciprofloxacin adsorption. Int. J. Environ. Sci. Technol. 13, 2449–2458 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Zeng, X. Tan, Y. Liu, S. Tian, G. Zeng, L. Jiang, S. Liu, J. Li, N. Liu, Z. Yin, Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Front. Chem. 6, 80 (2018)CrossRefGoogle Scholar
  33. 33.
    Y. Wu, Y. Tang, L. Li, P. Liu, X. Li, W. Chen, Y. Xue, The correlation of adsorption behavior between ciprofloxacin hydrochloride and the active sites of Fe-doped MCM-41. Front. Chem. 6, 17 (2018)CrossRefGoogle Scholar
  34. 34.
    S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018)CrossRefGoogle Scholar
  35. 35.
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)CrossRefGoogle Scholar
  36. 36.
    X. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. 30, 1705189 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Peng, H. Huang, D. Liu, C. Zhong, Radioactive barium ion trap based on metal-organic framework for efficient and irreversible removal of barium from nuclear waste water. ACS Appl. Mater. Interfaces. 8, 8527–8535 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018)CrossRefGoogle Scholar
  39. 39.
    I. Ahmed, S.H. Jhung, Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J. Hazard. Mater. 301, 259–276 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2017)CrossRefGoogle Scholar
  41. 41.
    C.-C. Wang, J.-R. Li, X.-L. Lv, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  42. 42.
    K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30, 1707634 (2018)CrossRefGoogle Scholar
  43. 43.
    A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol. Environ. Chem. 10, 1846–1863 (2012)CrossRefGoogle Scholar
  44. 44.
    X.-Y. Xu, C. Chu, H. Fu, X.-D. Du, P. Wang, W. Zhang, C.-C. Wang, Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem. Eng. J. 350, 436–444 (2018)CrossRefGoogle Scholar
  45. 45.
    Ş.S. Bayazit, S.T. Danalıoğlu, M.A. Salam, Ö.K. Kuyumcu, Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin. Environ. Sci. Pollut. Res. 32, 25452–25461 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 321, 711–719 (2017)CrossRefGoogle Scholar
  47. 47.
    C. Liang, X. Zhang, P. Feng, H. Chai, Y. Huang, ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chem. Eng. J. 344, 95–104 (2018)CrossRefGoogle Scholar
  48. 48.
    C. Chen, M. Zhang, Q. Guan, W. Li, Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr). Chem. Eng. J. 183, 60–67 (2012)CrossRefGoogle Scholar
  49. 49.
    E. Haque, J.E. Lee, I.T. Jang, Y.K. Hwang, J.-S. Chang, J. Jegal, S.H. Jhung, Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 181, 535–542 (2010)CrossRefGoogle Scholar
  50. 50.
    B. Liu, Y. Peng, Q. Chen, Adsorption of N/S-heteroaromatic compounds from fuels by functionalized MIL-101(Cr) metal-organic frameworks: The impact of surface functional groups. Energy Fuels 30, 5593–5600 (2016)CrossRefGoogle Scholar
  51. 51.
    T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng. J. 295, 403–413 (2016)CrossRefGoogle Scholar
  52. 52.
    N.A. Khan, D.K. Yoo, S.H. Jhung, Polyaniline-encapsulated metal-organic framework MIL-101: adsorbent with record-high adsorption capacity for the removal of both basic quinoline and neutral indole from liquid fuel. ACS Appl. Mater. Interfaces. 10, 35639–35646 (2018)CrossRefGoogle Scholar
  53. 53.
    X.-P. Luo, S.-Y. Fu, Y.-M. Du, J.-Z. Guo, B. Li, Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous Mesoporous Mater. 237, 268–274 (2017)CrossRefGoogle Scholar
  54. 54.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)CrossRefGoogle Scholar
  55. 55.
    G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Adv. Mater. 23, 3294–3297 (2011)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, B. Li, Ra Krishna, Z. Wu, D. Ma, Z. Shi, T. Pham, K. Forrest, B. Spacea, S. Ma, Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and p-complexation. Chem. Commun. 51, 2714–2717 (2015)CrossRefGoogle Scholar
  57. 57.
    Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, MIL-101-SO3H: a highly efficient brosted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. Eur. J. 20, 14976–14980 (2014)CrossRefGoogle Scholar
  58. 58.
    X. Zhao, X. Han, Z. Li, H. Huang, D. Liu, C. Zhong, Enhanced removal of iodide from water induced by a metal-incorporated porous metal-organic framework. Appl. Surf. Sci. 351, 760–764 (2015)CrossRefGoogle Scholar
  59. 59.
    Z. Hasan, J.W. Jun, S.H. Jhung, Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J. 278, 265–271 (2015)CrossRefGoogle Scholar
  60. 60.
    W.-J. Sun, F.-G. Xi, W.-L. Pan, E.-Q. Gao, MIL-101(Cr)-SO3Ag: an efficient catalyst for solvent-free A3 coupling reactions. Mol. Catal. 430, 36–42 (2017)CrossRefGoogle Scholar
  61. 61.
    Y. Zang, J. Shi, F. Zhang, Y. Zhong, W. Zhu, Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal. Sci. Technol. 3, 2044–2049 (2013)CrossRefGoogle Scholar
  62. 62.
    P.-H. Chang, W.-T. Jiang, Z. Li, C.-Y. Kuo, Q. Wu, J.-S. Jean, G. Lv, Interaction of ciprofloxacin and probe compounds with palygorskite PFl-1. J. Hazard. Mater. 303, 55–63 (2016)CrossRefGoogle Scholar
  63. 63.
    P. Trivedi, D. Vasudevan, Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface. Environ. Sci. Technol. 41, 3153–3158 (2007)CrossRefGoogle Scholar
  64. 64.
    A.R. Hamilton, G.A. Hutcheon, M. Roberts, E.E. Gaskell, Formulation and antibacterial profiles of clay-ciprofloxacin composites. Appl. Clay Sci. 87, 129–135 (2014)CrossRefGoogle Scholar
  65. 65.
    J.-J. Li, C.-C. Wang, H. Fu, J.-R. Cui, P. Xu, J. Guo, J.-R. Li, High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal-organic framework. Dalton Trans. 46, 10197–10201 (2017)CrossRefGoogle Scholar
  66. 66.
    L. Xie, D. Liu, H. Huang, Q. Yang, C. Zhong, Efficient capture of nitrobenzene from waste water using metal-organic frameworks. Chem. Eng. J. 246, 142–149 (2014)CrossRefGoogle Scholar
  67. 67.
    X. Peng, F. Hu, J. Huang, Y. Wang, H. Dai, Z. Liu, Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: kinetics, isotherm, adsorption mechanisms studies. Microporous Mesoporous Mat. 228, 196–206 (2016)CrossRefGoogle Scholar
  68. 68.
    E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309–314 (2004)CrossRefGoogle Scholar
  69. 69.
    Y. Zhuang, F. Yu, J. Ma, J. Chen, Adsorption of ciprofloxacin onto grapheme-soy protein biocomposites. New J. Chem. 39, 3333–3336 (2015)CrossRefGoogle Scholar
  70. 70.
    H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 282, 201–207 (2015)CrossRefGoogle Scholar
  71. 71.
    X.M. Peng, F.P. Hu, F.L.Y. Lam, Y.J. Wang, Z.M. Liu, H.L. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J. Colloid Interface Sci. 460, 349–360 (2015)CrossRefGoogle Scholar
  72. 72.
    J.-R. Li, Y.-X. Wang, X. Wang, B. Yuan, M.-L. Fu, Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study. J. Colloid Interface Sci. 453, 69–78 (2015)CrossRefGoogle Scholar
  73. 73.
    F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 222, 188–194 (2016)CrossRefGoogle Scholar
  74. 74.
    X. Peng, F. Hu, H. Dai, Q. Xiong, C. Xu, Study of the adsorption mechanisms of ciprofloxacin antibiotics onto graphitic ordered mesoporous carbons. J. Taiwan Inst. Chem. E. 65, 472–481 (2016)CrossRefGoogle Scholar
  75. 75.
    X. Li, S. Chen, X. Fan, X. Quan, F. Tan, Y. Zhang, J. Gao, Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon. J. Colloid Interface Sci. 447, 120–127 (2015)CrossRefGoogle Scholar
  76. 76.
    F. Yu, D. Chen, J. Ma, Adsorptive removal of ciprofloxacin by ethylene diaminetetraacetic acid/β-cyclodextrin composite from aqueous solution. New J. Chem. 42, 2216–2223 (2018)CrossRefGoogle Scholar
  77. 77.
    J. Ma, Y. Sun, F. Yu, Self-assembly and controllable synthesis of graphene hydrogel adsorbents with enhanced removal of ciprofloxacin from aqueous solutions. RSC Adv. 6, 83982–83993 (2016)CrossRefGoogle Scholar
  78. 78.
    W. Wang, J. Cheng, J. Jin, Q. Zhou, Y. Ma, Q. Zhao, A. Li, Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins. Sci. Rep. 6, 30331 (2016)CrossRefGoogle Scholar
  79. 79.
    J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep. 5, 13578 (2015)CrossRefGoogle Scholar
  80. 80.
    X.-D. Du, C.-C. Wan, J.-G. Liu, X.-D. Zhao, J. Zhong, Y.-X. Li, J. Li, P. Wang, Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. J. Colloid Interf. Sci. 506, 437–441 (2017)CrossRefGoogle Scholar
  81. 81.
    Y. Xiao, T. Han, G. Xiao, Y. Ying, H. Huang, Q. Yang, D. Liu, C. Zhong, Highly selective adsorption and separation of aniline/phenol from aqueous solutions by microporous MIL-53(Al): a combined experimental and computational study. Langmuir 30, 12229–12235 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China
  2. 2.School of Chemical EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations