Enhanced photocatalytic H2-production and photocatalytic degradation activity of cadmium oxide–graphene nanocomposite grown on mesoporous silica under visible light irradiation

  • Won-Chun OhEmail author
  • Dinh Cung Tien Nguyen
  • Yonrapach AreerobEmail author


Various combinations of mesoporous silica and cadmium oxide–graphene have been prepared using a self-assembly method under catering of cetyltrimethylammonium bromide (CTAB) as the surfactant template at ambient conditions. The structural and optical properties of the obtained nanocomposites were investigated by many different techniques. The results of photocatalytic measurements revealed that almost 100% of MB organic dye was removed with the presence of SiO2/CdO–graphene composite under visible light irradiation. Moreover, the initial pH also plays an important role in the photodegradation processes. On the other hand, this work opens a way to enhance the photocatalytic activity of gallic acid at ambient condition without any further different oxidation processes. From the evolutionary aspect, SiO2/CdO–graphene composite revealed better H2 generation than that of binary photocatalyst (CdO–graphene nanocomposite). The results of characterization and photodegradation suggest that SiO2/CdO–graphene material constitutes a new photocatalyst for the degradation of organic contaminants, as well as the development of an efficient hetero-system for hydrogen production.


Graphene-based nanocomposite CdO nanoparticles Mesoporous silica Dye decomposition Gallic acid degradation Hydrogen production 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Y. Wei, C. Gao, F.L. Meng, H.H. Li, L. Wang, J.H. Liu, X.J. Huang, J. Phys. Chem. C 116, 1034–1041 (2012)CrossRefGoogle Scholar
  2. 2.
    H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, G.M. Zeng, S.L. Zhao, Y. Wang, Chem. Eng. J. 173, 494–502 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Yao, Z. Yang, H. Sun, S. Wang, Ind. Eng. Chem. Res. 51, 14958–14965 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.C. Hsu, Y.T. Hsu, H.Y. Hsu, C.M. Yang, Chem. Mater. 19, 1120–1126 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Tiemann, Chem. Mater. 20, 961–971 (2008)CrossRefGoogle Scholar
  6. 6.
    Y.J. Acosta-Silva, R. Nava, V. Hernández-Morales et al., Appl. Catal. B 110, 108–117 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Kamegawa, D. Yamahana, H. Yamashita, J. Phys. Chem. C 114, 15049–15053 (2010)CrossRefGoogle Scholar
  8. 8.
    N. Venkatathri, Bull. Mater. Sci. 30, 615–617 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Arshad, J. Iqbal, Q. Mansoor, I. Ahmed, J. Appl. Phys. 121(24), 244901 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Li, T. Chen, L. Yan, Y. Dai, Z. Huang, J. Xiong, D. Song, Y. Lv, Z. Zeng, Colloids Surf. A 422, 90–99 (2013)CrossRefGoogle Scholar
  11. 11.
    D.C.T. Nguyen, K.-Y. Cho, W.-C. Oh, RSC Adv. 7, 29284–29294 (2017)CrossRefGoogle Scholar
  12. 12.
    D.C.T. Nguyen, W.-C. Oh, Sep. Purif. Technol. 190, 77–89 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, C. Meier, J. Nanosci. Nanotechnol. 4(8), 1039–1044 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    L. Hao, X. Gong, S. Xuan, H. Zhang, X. Gong, W. Jiang, Z. Chen, Appl. Surf. Sci. 252(24), 8724–8733 (2006)CrossRefGoogle Scholar
  15. 15.
    T. Sugama, B. Lipford, J. Mater. Sci. 32(13), 3523–3534 (1997)CrossRefGoogle Scholar
  16. 16.
    Q. Sun, P.J. Kooyman, J.G. Grossmann, P.H.H. Bomans, P.M. Frederik, P.C.M.M. Magusin, T.P.M. Beelen, R.A. Van Santen, N.A.J.M. Sommerdijk, Adv. Mater. 15(13), 1097–1100 (2006)CrossRefGoogle Scholar
  17. 17.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782–796 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    A. Mukherji, B. Seger, G.Q. Lu, L.Z. Wang, ACS Nano 5, 3483–3492 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Liu, H. Sun, S. Liu, Chem. Eng. J. 214, 298–303 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380–386 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    X.Y. Zhang, H.P. Li, X.L. Cui et al., J. Mater. Chem. 20, 2801–2806 (2010)CrossRefGoogle Scholar
  23. 23.
    B.J. Li, H.Q. Cao, J. Mater. Chem. 21, 3346–3349 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Bai, X.P. Shen, X. Zhong et al., Carbon 50, 2337–2346 (2012)CrossRefGoogle Scholar
  25. 25.
    N.H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1, 2607–2612 (2010)CrossRefGoogle Scholar
  26. 26.
    M.S. Zhu, P.L. Chen, M.H. Liu, ACS Nano 5, 4529–4536 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    D.C.T. Nguyen, K.-Y. Cho, W.-C. Oh, Appl. Chem. Eng. 28, 705–713 (2017)Google Scholar
  28. 28.
    W. Dong, C. Zhu, Opt. Mater. 22, 227–233 (2003)CrossRefGoogle Scholar
  29. 29.
    R. Vinodkumar, K.J. Lethy, P.R. Arunkumar, R.R. Krishnan, N.V. Pillai, V.P.M. Pillai, R. Philip, Mater. Chem. Phys. 121, 406–413 (2010)CrossRefGoogle Scholar
  30. 30.
    M.A. Grado-Caffaro, M. Grado-Caffaro, Phys. Lett. A 372, 4858–4860 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Gulino, G. Compagnini, A.A. Scalisi, Chem. Mater. 15, 3332–3336 (2003)CrossRefGoogle Scholar
  32. 32.
    S. Kumar, A.K. Ojha, B. Walkenfort, J. Photochem. Photobiol., B 159, 111–119 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, B. Liu, J. Phys. Chem. C 116, 11741–11745 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Mohanraj, D. Balasubramanian, N. Jhansi, R. Bakkiyaraj, J. Chandrasekaran, Int. J. Thin Films Sci. Technol. 6(2), 87–91 (2017)CrossRefGoogle Scholar
  35. 35.
    Q. Gu, H.Q. Zhuang, J.L. Long, X.H. An, H. Lin, H.X. Lin, X.X. Wang, Int. J. Photoenergy 2012, 857345 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, Y. Tong, Langmuir 28(28), 10558–10564 (2012)CrossRefPubMedGoogle Scholar
  37. 37.
    X.M. Guo, X.G. Liu, B.S. Xu, T. Dou, Colloids Surf. A 345, 141–146 (2009)CrossRefGoogle Scholar
  38. 38.
    W.L. Zhang, H.J. Choi, Langmuir 28(17), 7055–7062 (2012)CrossRefPubMedGoogle Scholar
  39. 39.
    Q. Liu, J.B. Shi, T. Wang, L.X. Zeng, G.B. Jiang, Angew. Chem. Int. Ed. 50, 5913–5917 (2011)CrossRefGoogle Scholar
  40. 40.
    X. Zhou, T. Shi, Appl. Surf. Sci. 259, 566–573 (2012)CrossRefGoogle Scholar
  41. 41.
    C.Y. Jimmy, G. Li, X. Wang, X. Hu, C.W. Leung, Z. Zhang, Chem. Commun. 25, 2717–2719 (2006)Google Scholar
  42. 42.
    Q. Li, B.D. Guo, G.J. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, B. Liu, Phys. Chem. C 116, 11741–11745 (2012)CrossRefGoogle Scholar
  44. 44.
    W. Li, M. Li, S. Xie, T. Zhai, M. Yu, C. Liang, Y. Tong, CrystEngComm 15(21), 4212–4216 (2013)CrossRefGoogle Scholar
  45. 45.
    R. Mohammed, M.M. Hussain, A.M. Asiri, Prog. Nat. Sci. 27, 566–573 (2017)CrossRefGoogle Scholar
  46. 46.
    A.S. Aldwayyan, F. Al-Jekhedab, M. Al-Noaimi, B. Hammouti, T.B. Hadda, M. Suleiman, I. Warad, Int. J. Electrochem. Sci. 8, 10506–10514 (2013)Google Scholar
  47. 47.
    D.A. Zatsepin et al., Phys. Status Solidi B 252, 2185–2190 (2015)CrossRefGoogle Scholar
  48. 48.
    X. Zhou, T. Shi, Appl. Surf. Sci. 259, 566–573 (2012)CrossRefGoogle Scholar
  49. 49.
    Y. Qi, J.R. Eskelsen, U. Mazur, K.W. Hipps, Langmuir 28, 3489–3493 (2012)CrossRefPubMedGoogle Scholar
  50. 50.
    R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53, 51–59 (1999)CrossRefGoogle Scholar
  51. 51.
    N. Remya, J.-G. Lin, Chem. Eng. J. 166, 797–813 (2011)CrossRefGoogle Scholar
  52. 52.
    F. Dong, Z.Y. Wang, Y.J. Sun, W.K. Ho, H.D. Zhang, J. Colloid Interface Sci. 401, 70–79 (2013)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringAnhui University of Science & TechnologyHuainanPeople’s Republic of China
  2. 2.Department of Advanced Materials Science & EngineeringHanseo UniversitySeosan-siSouth Korea

Personalised recommendations