Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effects of different dimensional organic amines on synthetic zinc phosphites/phosphates

  • 36 Accesses

Abstract

Three different dimensional zinc phosphites and zinc phosphates, [C7H18N]2[Zn(HPO3)2] (1), [C6H9N2][Zn2(PO4)(HPO3)] (2), and [C6H14N2][Zn2(PO4)2] (3) were hydro(solvo)thermally synthesized from organic amines with the same number of nonhydrogen atoms and different dimensionalities and sizes. Structural analysis indicates that compound 1 shows a one-dimensional (1D) chain structure; compound 2 is an inorganic–organic hybrid two-dimensional (2D) material; compound 3 is a three-dimensional (3D) open-framework zinc phosphate EDI zeolite. The mechanisms of 1D chain-like n-heptamine, 2D planar 3-aminomethylpyridine, and 3D triethylenediamine on the synthetic process were analyzed. The n-heptamine has only one function: a protonated template in compound 1, while 3-aminomethylpyridine has two functions: a protonated template and binding ligand in the synthesis of compound 2. The triethylenediamine has three functions in compound 3: a protonated template, space-filling agent, and structure-directing agent. Thus, the three organic amines play different roles in the three compounds. They were analyzed by XRD, SEM, TGA, FT-IR, ICP, and CHN analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    J.Y. Li, A. Corma, J.H. Yu, Chem Soc Rev. 44, 7112 (2015)

  2. 2.

    D.F. Weng, Z.M. Wang, S. Gao, Chem. Soc. Rev. 40, 3157 (2011)

  3. 3.

    C.N.R. Rao, S. Natarajan, A. Choudhury, S. Neeraj, A.A. Ayi, Acc. Chem. Res. 34, 80 (2001)

  4. 4.

    T. Rojo, J.L. Mesa, J. Lago, B. Bazán, J.L. Pizarro, M.I. Arriortua, J. Mater. Chem. 19, 3793 (2009)

  5. 5.

    S.T. Wilson, B.M. Lok, C.A. Messian, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982)

  6. 6.

    R. Murugavel, A. Choudhury, M.G. Walawalkar, R. Pothiraja, C.N.R. Rao, Chem. Rev. 108, 3549 (2008)

  7. 7.

    J.B. Wu, Y. Yan, B.K. Liu, X.L. Wang, J.Y. Li, J.H. Yu, Chem. Commun. 49, 4995 (2013)

  8. 8.

    M. Yang, P.F. Yan, F.F. Xu, J.H. Ma, U. Welz-Biermann, Micropor Mesoporo Mater 147, 73 (2012)

  9. 9.

    Y.T. Chang, S.H. Lo, C.H. Lin, L.I. Hung, S.L. Wang, Chem.-Eur. J. 24, 12474 (2018)

  10. 10.

    H.Z. Xing, W.T. Yang, T. Su, Y. Li, J. Xu, T. Nakano, J.H. Yu, R.R. Xu, Angew. Chem. Int. Ed. 49, 2328 (2010)

  11. 11.

    G.M Wang, J.H Li, L Wei, S.D. Han, X.M. Zhao, Z.Z. Bao, CrystEngComm. 17, 8414 (2015)

  12. 12.

    X.J. Wang, J.H. Zhang, J.L. Song, F. Kong, J.G. Mao, CrystEngComm 15, 2519 (2013)

  13. 13.

    P. Ramaswamy, N.N. Hegde, R. Prabhu, V.M. Vidya, A. Datta, S. Natarajan, Inorg. Chem. 48, 11697 (2009)

  14. 14.

    H.Y. Lin, C.Y. Chin, H.L. Huang, W.Y. Huang, M.J. Sie, L.H. Huang, Y.H. Lee, C.H. Lin, K.H. Lii, X.H. Bu, S.L. Wang, Science 339, 811 (2013)

  15. 15.

    C. Lin, F.J. Pan, J. Li, Y.P. Chen, D.E. Shi, T.Q. Ma, Y.Q. Yang, X. Du, W. Wang, F.H. Liao, J.H. Lin, T. Yang, J.L. Sun, Cryst. Growth Des. 18, 1267 (2018)

  16. 16.

    X.L. Wang, Y. Yan, J.B. Wu, C.Q. Zhang, J.Y. Li, CrystEngComm 16, 2266 (2014)

  17. 17.

    X.C. Liu, Y. Xing, X.L. Wang, H.B. Xu, X.Z. Liu, K.Z. Shao, Z.M. Su, Chem. Commun. 46, 2614 (2010)

  18. 18.

    L.M. Li, K. Cheng, J. Zhang, Inorg. Chem. Commun. 30, 136 (2013)

  19. 19.

    J.A. Rodgers, W.T.A. Harrison, Chem. Commun. 2000, 2385 (2000)

  20. 20.

    J.M. Tian, B. Li, X.Y. Zhang, J.P. Zhang, CrystEngComm 16, 1071 (2014)

  21. 21.

    H.D. Li, L.R. Zhang, Q.S. Huo, Y.L. Liu, J. Solid State Chem. 197, 75 (2013)

  22. 22.

    A. Sutrisno, L. Liu, J. Xu, Y.N. Huang, Phys. Chem. Chem. Phys. 13, 16606 (2011)

  23. 23.

    X. Zhang, G.M. Wang, Z.H. Wang, Y.X. Wang, J.H. Lin, J Mol Struct. 1056–1057, 25 (2014)

  24. 24.

    Y.L. Lai, K.H. Lii, S.L. Wang, J. Am. Chem. Soc. 129, 5350 (2007)

  25. 25.

    Z.J. Dong, L. Zhao, Z.Q. Liang, P. Chen, Y. Yan, J.Y. Li, J.H. Yu, R.R. Xu, Dalton Trans. 39, 5439 (2010)

  26. 26.

    Y.L. Yang, N. Li, H.B. Song, H.G. Wang, W.B. Chen, S.H. Xiang, Chem. Mater. 19, 1889 (2007)

  27. 27.

    J. Přech, P. Pizarro, D.P. Serrano, J. Čejka, Chem Soc Rev 47, 8263 (2018)

  28. 28.

    M.Y. Emran, M.A. Shenashen, H. Morita, S.A. El-Safty, Advanced healthcare materials 7, 1701459 (2018)

  29. 29.

    M.Y. Emran, M.A. Shenashen, H. Morita, S.A. El-Saftya, Biosens Bioelectron 109, 237 (2018)

  30. 30.

    N. Akhtar, M.Y. Emran, M.A. Shenashen, H. Khalifa, T. Osaka, A. Faheem, T. Homma, H. Kawarada, S.A. El-Safty, J Mater Chem B5, 7985 (2017)

  31. 31.

    M.Y. Emran, M.A. Shenashen, A.A. Abdelwahab, M. Abdelmottaleb, S.A. El-Safty, New J. Chem 42, 5037 (2018)

  32. 32.

    D. Hassen, M.A. Shenashen, A.R. El-Safty, A. Elmarakbi, S.A. El-Safty, Scientific reports. 8, 3740 (2018)

  33. 33.

    D. Hassen, S.A. El-Safty, K. Tsuchiya, A. Chatterjee, A. Elmarakbi, M.A. Shenashen, M. Sakai, Scientific reports. 6, 24330 (2016)

  34. 34.

    M.A. Shenashen, D. Hassen, S.A. El-Safty, M.M. Selim, N. Akhtar, A. Chatterjee, A. Elmarakbi, Advanced Materials Interfaces 3, 1600743 (2016)

  35. 35.

    M.A. Shenashen, D. Hassen, S.A. El-Safty, H. Isago, A. Elmarakbi, H. Yamaguchi, Chem Eng J 313, 83 (2017)

  36. 36.

    I. Halime, A. Bezgour, M. Fahim, M. Dusek, K. Fejfarova, M. Lachkar, B.E. Bali, J. Chem. Crystallogr. 41, 223 (2011)

  37. 37.

    C.M. Wang, C.W. Chiu, H.M. Lin, K.H. Lii, J. Solid State Chem. 204, 16 (2013)

  38. 38.

    SAINT, Bruker AXS Inc. 5465 East Cheryl Parkway, Madison, WI 53711–5373, USA, 2000.

  39. 39.

    G.M. Sheldrick, Acta Crystallogr. A. 64, 112 (2008)

  40. 40.

    Z.G. Zhang, S.J. Yao, J.C. Liao, Z.Y. Dai, J. Fu, Mater. Chem. A. 1, 4945 (2013)

  41. 41.

    C. Fan, D. Slebodnick, R. Troya, B.E. Angel, Hanson. Inorg. Chem. 44, 2719 (2005)

  42. 42.

    J.H. Li, L. Wei, Z.Z. Bao, G.M. Wang, Z.H. Wang, Solid State Sci 51, 13 (2016)

  43. 43.

    A.L.J. Spek, J. Appl. Crystallogr. 36, 7 (2003)

  44. 44.

    W.T.A. Harrison, Acta Crystallogr. E. 57, 248 (2001)

  45. 45.

    J. Liang, J.Y. Li, J.H. Yu, Q.H. Pan, Q.R. Fang, R.R. Xu, J. Solid State Chem. 178, 2673 (2005)

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (51774175 and 51805235), the Department of Education of Liaoning Province (LJ2017QL005) and College Students' innovation training program (201810147077).

Author information

Correspondence to Xuelei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1735 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, Y., Dong, Z. et al. The effects of different dimensional organic amines on synthetic zinc phosphites/phosphates. J Porous Mater 27, 21–28 (2020). https://doi.org/10.1007/s10934-019-00790-2

Download citation

Keywords

  • Zinc phosphites/phosphates
  • Organic amine
  • Templating effect
  • Hydro(solvo)thermal synthesis
  • Inorganic–organic hybrid