Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimized supercapacitive performance of graphene-hydrogel by porous texture controlling

  • 28 Accesses


Porous texture of graphene-hydrogel electrode material is critical for the performance of supercapacitors. In this work, the pore channels are controlled by two aspects, including the graphene oxide concentration and the pressure for fabricating hydrogel electrodes. It is found that the sample starting from 3 mg ml−1 graphene oxide shows the largest specific capacitance of 297 F g−1 at a current density of 0.5 A g−1 in 2 M KOH solution after the hydrothermal process. By increasing the pressure to 10 MPa, the electrochemical performance can be further improved to 330 F g−1. This good performance is mainly attributed to the preferable specific surface area (2110 m2 g−1) and the dense laminated structure under the optimizing preparation conditions. Besides, the cycle measurement demonstrates the excellent cycling stability of the samples, while 88% of its initial capacitance can be retained after 10,000 cycles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3: a
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

  2. 2.

    J.-R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008). https://doi.org/10.1126/science.1158736

  3. 3.

    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

  4. 4.

    Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). https://doi.org/10.1126/science.1213003

  5. 5.

    M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.036

  6. 6.

    Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.-F. Fulvio, R.-T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011). https://doi.org/10.1002/adma.201100984

  7. 7.

    Y.K. Yang, C.P. Han, B.B. Jiang, J. Iocozzia, C.G. He, D. Shi et al., Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater. Sci. Eng. 102, 1–72 (2016). https://doi.org/10.1016/j.mser.2015.12.003

  8. 8.

    X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012). https://doi.org/10.1039/c1cs15078b

  9. 9.

    V.-B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015). https://doi.org/10.1016/j.mseb.2014.11.002

  10. 10.

    S.J. Park, J.H. An, J.-R. Potts, A. Velamakanni, S. Murali, R.-S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071

  11. 11.

    J.K. Yuan, A. Luna, W. Neri, C. Zakri, T. Schilling, A. Colin et al., Graphene liquid crystal retarded percolation for new high-k materials. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9700

  12. 12.

    C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014). https://doi.org/10.1039/c3cs60303b

  13. 13.

    G. Demazeau, Solvothermal reactions: an original route for the synthesis of novel materials. J. Mater. Sci. 43, 2104–2114 (2008). https://doi.org/10.1007/s10853-007-2024-9

  14. 14.

    J.P. Lai, W.X. Niu, R. Luque, G.B. Xu, Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015). https://doi.org/10.1016/j.nantod.2015.03.001

  15. 15.

    J. Zheng, C.A. Di, Y.Q. Liu, H.T. Liu, Y.L. Guo, C.Y. Du et al., High quality graphene with large flakes exfoliated by oleyl amine. Chem. Commun. 46, 5728–5730 (2010). https://doi.org/10.1039/c0cc00954g

  16. 16.

    Y.G. Niu, Q.H. Fang, X. Zhang, P.P. Zhang, Y. Li, Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys. Lett. A 380, 3128–3132 (2016). https://doi.org/10.1016/j.physleta.2016.07.027

  17. 17.

    S.-A. Hasan, E.-K. Tsekoura, V. Sternhagen, M. Strømme, Evolution of the composition and suspension performance of nitrogen-doped graphene. J. Phy. Chem. C 116, 6530–6536 (2012). https://doi.org/10.1021/jp210474x

  18. 18.

    D.Y. Pan, J.C. Zhang, Z. Li, M.B. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010). https://doi.org/10.1002/adma.200902825

  19. 19.

    Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010). https://doi.org/10.1021/nn101187z

  20. 20.

    H.C. Bi, K.B. Yin, X. Xie, Y.L. Zhou, N. Wan, F. Xu et al., Low temperature casting of graphene with high compressive strength. Adv. Mater. 24, 5124–5129 (2012). https://doi.org/10.1002/adma.201201519

  21. 21.

    C.C. Ji, M.W. Xu, S.J. Bao, C.J. Cai, Z.J. Lu, H. Chai et al., Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors. J. Colloid Interface Sci. 407, 416–424 (2013). https://doi.org/10.1016/j.jcis.2013.06.054

  22. 22.

    H.L. Guo, P. Su, X.F. Kang, S.K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 1, 2248–2255 (2013). https://doi.org/10.1039/c2ta00887d

  23. 23.

    P. Liu, H.Y. Chen, X. Chang, Y. Xue, J.W. Zhou, Z.C. Zhao et al., Novel method of preparing CoFe2O4/graphene by using steel rolling sludge for supercapacitor. Electrochim. Acta 231, 565–574 (2017). https://doi.org/10.1016/j.electacta.2017.02.088

  24. 24.

    Ali Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. A 6, 2866–2876 (2018). https://doi.org/10.1039/c7ta10013b

  25. 25.

    J.-H. Kaufman, S. Metin, Symmetry breaking in nitrogen-doped amorphous carbon: infrared observation of the Raman-active G and D bands. Phys. Rev. B 39, 13053–13060 (1989). https://doi.org/10.1103/PhysRevB.39.13053

  26. 26.

    T. Sönmez, M.-F. Jadidi, K. Kazmanli, Ö. Birer, M. Ürgen, Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel. Vacuum 129, 63–73 (2016). https://doi.org/10.1016/j.vacuum.2016.04.014

  27. 27.

    T. Alizadeh, L.-H. Soltani, Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor. Sens. Actuators B 234, 361–370 (2016). https://doi.org/10.1016/j.snb.2016.04.165

  28. 28.

    K.F. Chen, F. Liu, S.Y. Song, D.F. Xue, Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm 16, 7771–7776 (2014). https://doi.org/10.1039/c4ce01030b

  29. 29.

    F. Liu, S.Y. Song, D.F. Xue, H.J. Zhang, Folded structured graphene paper for high performance electrode materials. Adv. Mater. 24, 1089–1094 (2012). https://doi.org/10.1002/adma.201104691

Download references

Author information

Correspondence to Yu Hui Huang or Yong Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, H.Y., Lu, C., Huang, Y.H. et al. Optimized supercapacitive performance of graphene-hydrogel by porous texture controlling. J Porous Mater 27, 11–19 (2020). https://doi.org/10.1007/s10934-019-00789-9

Download citation


  • Graphene-hydrogel
  • Supercapacitor
  • Hydrothermal method
  • Electrochemical performance