A novel support of sponge-like cellulose composite polymer for immobilizing laccase and its application in nitrogenous organics biodegradation

  • Yaohua Gu
  • Ping XueEmail author
  • Keren Shi


For the first time, the cellulose (Ce) composite polymer beads were fabricated by initiating polymerization of dopamine, glycidylmethacrylate and N,N-methylene bisacrylamide in Ce solution dissolved by ionic liquid. The beads were characterized by scanning electron microscopy, FT-IR spectroscopy and X-ray diffraction, and the results showed that the Ce composite polymer beads possessed the sections of the run-through sponge-like macropores and the reactive functional groups. The laccase (Lac) was covalently immobilized through the reaction between the amino groups of the enzyme and the epoxy groups and quinone groups as well as phenolic hydroxyls onto the beads. The effect of Lac concentration, temperature and pH stability on the activities of the biocatalyst was determined. The results showed that the immobilized Lac showed enhanced temperature and pH stability compared with free Lac. The biocatalyst was applied for nitrogenous organics biodegradation where the degradation efficiency reached 99.9% for indole and 97.4% for carbazole in present of 2 mg ABTS at pH 5.0 and 30 °C, which were far higher than that of indole and carbazole were degraded by Lac alone. In addition, 95.1% of indole and 66.2% of carbazole were eliminated after ten-cycle batch, which demonstrated that the immobilized Lac had excellent catalytic performance and reusability. Accordingly, the sponge-like Ce composite polymer beads were potential support for immobilizing enzyme.


Cellulose composite polymer beads Sponge-like macropores Immobilized laccase Indole and carbazole Biodegradation 



This work was supported by the National Natural Science Foundation of China (No. 21663020) and the Science and Technology Support Project of Ningxia Province (NX015076).


  1. 1.
    H. Zhu, Y. Han, W. Ma, H. Han, W. Ma, Bioresour. Technol. 245, 786–793 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Xu, H. Han, H. Zhuang, B. Hou, S. Jia, D. Wang, K. Li, Q. Zhao, J. Environ. Sci. 31, 221 (2015)CrossRefGoogle Scholar
  3. 3.
    R.V. Mambrini, C.Z. Maia, J.D. Ardisson, P.P. de Souza, F.C.C. Moura, N. J. Chem. 41, 115 (2016)Google Scholar
  4. 4.
    A. Samokhvalov, Coord. Chem. Rev. 374, 236 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Riva, Trends Biotechnol. 24, 219 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, Y. Xu, Y. Yang, H. Yang, H. Yuan, Y. Huang, X. Liu, Russ. J. Phys. Chem. A 90, 2044 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Rodríguez Couto, J.L. Toca Herrera, Biotechnol. Adv. 24, 500 (2006)CrossRefGoogle Scholar
  8. 8.
    A.I. Cañas, S. Camarero, Biotechnol. Adv. 28, 694 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Tarasi, M. Alipour, L. Gorgannezhad, S. Imanparast, A. Yousefi-Ahmadipour, A. Ramezani, M.R. Ganjali, A. Shafiee, M.A. Faramarzi, M. Khoobi, Macromol. Res. 26, 755 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Chhabra, S. Mishra, T.R. Sreekrishnan, J. Environ. Health Sci. Eng. 13, 1 (2015)CrossRefGoogle Scholar
  11. 11.
    M.N. Kathiravan, G.H. Gim, J. Ryu, G.H. Han, S.W. Kim, Biotechnol. Bioprocess Eng. 20, 267 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Zheng, B. Cui, X. Wu, G. Meng, H. Liu, J. Si, Int. Biodeterior. Biodegrad. 110, 69 (2016)CrossRefGoogle Scholar
  13. 13.
    M. ElKaoutit, I. Naranjo-Rodriguez, M. Dominguez, J.L. Hidalgo-Hidalgo De Cisneros, Microchim. Acta 175, 241 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V.P.M. Shafi, A. Ulman, M. Cowman, R.A. Gross, J. Am. Chem. Soc. 125, 1684 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Ma, X. Yu, C. Song, Q. Xue, B. Jiang, J. Mol. Catal. B 127, 76 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Xue, Y. Gu, W. Su, H. Shuai, J. Wang, Appl. Surf. Sci. 362, 427 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Doğan, E. Bayram, L. Uzun, S. Şenel, A. Denizli, J. Appl. Polym. Sci. 132, 41981 (2015)Google Scholar
  18. 18.
    Y. Chen, Y. Jiang, J. Gao, W. Wu, L. Dong, Z. Yang, J. Porous Mater. 24, 787 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, P. Qi, Y. Ding, M.F. Maitz, Z. Yang, Q. Tu, K. Xiong, Y. Leng, N. Huang, J. Mater. Chem. B 3, 72 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Deng, H. Zhao, S. Zhang, C. Tian, D. Zhang, P. Du, C. Liu, H. Cao, H. Li, J. Mol. Catal. B 112, 15 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Ye, J. Jiang, Z. Xu, Colloids Surf. B 60, 62 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Z. Tang, J. Wang, H. Wu, C. Lin, Y. Lin, J. Mater. Chem. 21, 17468 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Bagheri, H. Rodríguez, R.P. Swatloski, S.K. Spear, D.T. Daly, R.D. Rogers, Biomacromolecules 9, 381 (2008)CrossRefGoogle Scholar
  24. 24.
    M.B. Turner, S.K. Spear, J.D. Holbrey, D.T. Daly, R.D. Rogers, Biomacromolecules 6, 2497 (2005)CrossRefGoogle Scholar
  25. 25.
    A.M. Othman, E. González-Domínguez, Á. Sanromán, M. Correa-Duarte, D. Moldes, RSC Adv. 6, 11469 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Patrick, G. Mtui, A. Mshandete, G. Johansson, A. Kivaisi, Afr. J. Biochem. Res. 3, 250 (2009)Google Scholar
  27. 27.
    M.M. Bradford, Anal. Biochem. 72, 248 (1976)CrossRefGoogle Scholar
  28. 28.
    J. Lin, L. Fan, R. Miao, X. Le, S. Chen, X. Zhou, Int. J. Biol. Macromol. 78, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Sundberg, J. Porath, J. Chromatogr. A 90, 87 (1974)CrossRefGoogle Scholar
  30. 30.
    V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Trends Biotechnol. 21, 445 (2003)CrossRefGoogle Scholar
  31. 31.
    H. Sun, H. Yang, W. Huang, S. Zhang, J. Colloid Interface Sci. 450, 353 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Liu, H. Wang, Z. Li, X. Lu, X. Zhang, S. Zhang, K. Zhou, Mater. Chem. Phys. 128, 220 (2011)CrossRefGoogle Scholar
  33. 33.
    Z. Liu, H. Wang, B. Li, C. Liu, Y. Jiang, G. Yu, X. Mu, J. Mater. Chem. 22, 1585 (2012)Google Scholar
  34. 34.
    F. Ibrahim, M. Moniruzzaman, S. Yusup, Y. Uemura, J. Mol. Liq. 211, 370 (2015)CrossRefGoogle Scholar
  35. 35.
    T.S. Anirudhan, S. Jalajamony, P.S. Suchithra, Colloid Surf. A 335, 107 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Cui, C. Tao, Y. Tian, Q. He, J. Li, Langmuir 22, 8205 (2006)CrossRefGoogle Scholar
  37. 37.
    M. Barsbay, Y. Kodama, O.G. Ven, Cellulose 21, 4067 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Xiao, J. Zai, X. Li, Y. Gong, B. Li, Q. Han, X. Qian, Nano Energy 6, 51 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Wu, M. Luan, J. Zhao, Int. J. Biol. Macromol. 39, 185 (2006)CrossRefGoogle Scholar
  40. 40.
    R.O. Cristóvão, A.P.M. Tavares, A.I. Brígida, J.M. Loureiro, R.A.R. Boaventura, E.A. Macedo, M.A.Z. Coelho, J. Mol. Catal. B 72, 6 (2011)CrossRefGoogle Scholar
  41. 41.
    T. Xia, C. Liu, J. Hu, C. Guo, Chem. Eng. J. 295, 201 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Wan, B. Ke, Z. Xu, Enzyme Microb. Technol. 42, 332 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Taheran, M. Naghdi, S.K. Brar, E.J. Knystautas, M. Verma, R.Y. Surampalli, Sci. Total Environ. 605, 315 (2017)CrossRefGoogle Scholar
  44. 44.
    E. Guerrero, P. Aburto, E. Terrés, O. Villegas, E. González, T. Zayas, F. Hernández, E. Torres, J. Porous Mater. 20, 387 (2013)CrossRefGoogle Scholar
  45. 45.
    H. Sun, H. Ma, Z. Liu, Y. Li, P. Xu, X. Wang, Nanotechnol. Environ. Eng. 2, 5 (2017)CrossRefGoogle Scholar
  46. 46.
    Y. Qu, E. Shen, Q. Ma, Z. Zhang, Z. Liu, W. Shen, J. Wang, D. Li, H. Li, J. Zhou, J. Environ. Sci. 34, 126 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Gu, P. Xue, F. Jia, K. Shi, J. Hazard. Mater. 365, 118 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical EngineeringNingxia UniversityYinchuanChina

Personalised recommendations