Journal of Porous Materials

, Volume 26, Issue 6, pp 1879–1888 | Cite as

Efficient synthesis of high silica SSZ-13 zeolite via a steam-assisted crystallization process

  • Yuping LiEmail author
  • Rui Liu
  • Qingping Guo
  • Huimin Bian
  • Aidong Lan
  • Xiaofeng Li
  • Peide Han
  • Tao Dou


High silica SSZ-13 zeolite was synthesized by an efficient and green steam-assisted crystallization (SAC) method under a low alkalinity and low organic templates amount system. The as-prepared samples were characterized by XRD, SEM, N2 adsorption–desorption, TG–DTG and NH3-TPD. The results showed that the SAC method can not only remarkably improve zeolite yield but also enhance the crystallization rate of SSZ-13 zeolite compare to conventional hydrothermal route. Meanwhile, it was also found that the various content of the organic structure directing agent (N,N,N-trimethyladamantammonium hydroxide, TMAdaOH) in the dry gel can adjust flexibly the crystal size, morphology and acidity of samples. The zeolite samples with smaller particles and more strong acidity amount were more likely obtained under the higher TMAdaOH/SiO2 ratio (0.2) condition. In addition, the catalytic evaluation in methanol-to-olefins (MTO) reaction showed that the high silica SSZ-13 catalysts synthesized by SAC method exhibited longer lifetime and comparative selectivity to ethylene and propene than those of the SSZ-13s obtained by conventional hydrothermal route. Thus, the SAC route is believed to be a competitive strategy to synthesize high silica SSZ-13 zeolites with improved MTO catalytic performance.


SSZ-13 CHA zeolite Steam-assisted crystallization High SiO2/Al2O3 ratios MTO reaction 



The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (No. 51371123), the Natural Science Foundation of Shanxi Province (No. 201701D121024), and Shanxi Scholarship Council of China (No. 2017-042).


  1. 1.
    H. Kalipcilar, T.C. Bowen, R.D. Noble, J.L. Falconer, Chem. Mater. 14(8), 3458–3464 (2002)CrossRefGoogle Scholar
  2. 2.
    M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, J. Am. Chem. Soc. 134(4), 1970–1973 (2012)PubMedCrossRefGoogle Scholar
  3. 3.
    T.D. Pham, Q. Liu, R.F. Lobo, Langmuir 29(2), 832–839 (2013)PubMedCrossRefGoogle Scholar
  4. 4.
    F. Bleken, M. Bjørgen, L. Palumbo, S. Bordiga, S. Svelle, K.P. Lillerud, U. Olsbye, Top. Catal. 52(3), 218–228 (2009)CrossRefGoogle Scholar
  5. 5.
    W.L. Dai, X.M. Sun, B. Tang, G.J. Wu, L.D. Li, N.J. Guan, M. Hunger, J. Catal. 314(5), 10–20 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Yamanaka, M. Itakura, Y. Kiyozumi, Y. Ide, M. Sadakane, T. Sano, Microporous Mesoporous Mater. 158(4), 141–147 (2012)CrossRefGoogle Scholar
  7. 7.
    Y.H. Wang, J.Y. Chen, X.R. Lei, Y.J. Ren, J. Wu, Adv. Powder Technol. 29(5), 1112–1118 (2018)CrossRefGoogle Scholar
  8. 8.
    B.N. Bhadra, P.W. Seo, N.A. Khan, J.W. Jun, T.W. Kim, C.U. Kim, S.H. Jhung, Catal. Today 298(01), 53–60 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Zhao, L.I. Yuan, Y. Zhang, X.Y. Tan, Chem. Ind. Eng. Prog 36(01), 166–173 (2017)Google Scholar
  10. 10.
    E.A. Eilertsen, B. Arstad, S. Svelle, K.P. Lillerud, Microporous Mesoporous Mater. 153(153), 94–99 (2012)CrossRefGoogle Scholar
  11. 11.
    M.A. Camblor, L.A. Villaescusa, M.J. Díaz-Cabañas, Cheminform 31(14), 59–76 (2010)CrossRefGoogle Scholar
  12. 12.
    E.A. Eilertsen, M.H. Nilsen, R. Wendelbo, U. Olsbye, K.P. Lillerud, Stud. Surf. Sci. Catal. 174(08), 265–268 (2008)CrossRefGoogle Scholar
  13. 13.
    Z. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S.P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, Angew. Chem. 54(19), 5683–5687 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Ren, Q. Wu, C. Yang, L. Zhu, C. Li, P. Zhang, H. Zhang, X. Meng, F.S. Xiao, J. Am. Chem. Soc. 134(37), 15173–15176 (2012)PubMedCrossRefGoogle Scholar
  15. 15.
    Q.M. Wu, X. Wang, G.D. Qi, Q. Guo, S.X. Pan, X.J. Meng, J. Xu, F. Deng, F.T. Fan, Z.C. Feng, J. Am. Chem. Soc. 136(10), 4019–4025 (2014)PubMedCrossRefGoogle Scholar
  16. 16.
    S. Inagaki, S. Shinoda, Y. Kaneko, K. Takechi, R. Komatsu, Y. Tsuboi, H. Yamazaki, J.N. Kondo, Y. Kubota, ACS Catal. 3(1), 74–78 (2013)CrossRefGoogle Scholar
  17. 17.
    C.M. Lew, Z. Li, S.I. Zones, M. Sun, Y. Yan, Microporous Mesoporous Mater. 105(1), 10–14 (2007)CrossRefGoogle Scholar
  18. 18.
    D.Y. Zhao, C.F. Xue, Adv. Mater. 20(4), 843–844 (2010)CrossRefGoogle Scholar
  19. 19.
    O. Larlus, S. Mintova, T. Bein, Microporous Mesoporous Mater. 96(1), 405–412 (2006)CrossRefGoogle Scholar
  20. 20.
    J.L. Zhang, P. Cao, H.Y. Yan, Z.J. Wu, T. Dou, Chem. Eng. J. 291, 82–93 (2016)CrossRefGoogle Scholar
  21. 21.
    W.Y. Xu, J.X. Dong, J.P. Li, J.Q. Li, F. Wu, J. Chem. Soc. Chem. Commun. 10(10), 755–756 (1990)CrossRefGoogle Scholar
  22. 22.
    Q. Wu, X. Meng, X. Gao, F.S. Xiao, Acc. Chem. Res. 51(6), 1396–1403 (2018)PubMedCrossRefGoogle Scholar
  23. 23.
    Q. Feng, R.Y. Pei, H.G. Liu, Y.U. Haibin, L.J. Zhang, Y.R. Zhang, CIESC J. 68(3), 1231–1238 (2017)Google Scholar
  24. 24.
    M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Top. Catal. 9(2), 77–92 (1999)CrossRefGoogle Scholar
  25. 25.
    S. Alfaro, M.A. Valenzuela, P. Bosch, J. Porous Mater. 16(3), 337–342 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Hirota, K. Murata, S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Mater. Chem. Phys. 123(2), 507–509 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Nakai, K. Miyake, R. Inoue, K. Ono, H.A. Jabri, Y. Hirota, Y. Uchida, M. Miyamoto, N. Nishiyama, Microporous Mesoporous Mater. 273, 189–195 (2018)CrossRefGoogle Scholar
  28. 28.
    Z.H. Wei, K.K. Zhu, L.Y. Xing, F. Yang, Y.S. Li, Y.R. Xu, X.D. Zhu, RSC Adv. 7(39), 24015–24021 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Cai, Y. Liu, S. Gu, Y. Yan, J. Am. Chem. Soc. 132(37), 12776–12777 (2010)PubMedCrossRefGoogle Scholar
  30. 30.
    M. Mehdipourghazi, A. Moheb, H. Kazemian, Microporous Mesoporous Mater. 136(1), 18–24 (2010)CrossRefGoogle Scholar
  31. 31.
    X.Y. Yin, N.B. Chu, X.W. Lu, Z.F. Li, H. Guo, J. Cryst. Growth 441(3), 1–11 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, A. Jiménez-López, U. Simon, Appl. Catal. A 328(2), 174–182 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Niwa, N. Katada, M. Sawa, Y. Murakami, J. Phys. Chem. 99(21), 223–236 (1995)CrossRefGoogle Scholar
  34. 34.
    X.X. Wang, J.F. Zhang, T. Zhang, X. He, F.E. Song, Y.Z. Han, Y.S. Tan, RSC Adv. 6(28), 23428–23437 (2016)CrossRefGoogle Scholar
  35. 35.
    H.Y. Li, Y.Q. Wang, F.J. Meng, H.B. Chen, C. Sun, S.H. Wang, RSC Adv. 6(101), 99129–99138 (2016)CrossRefGoogle Scholar
  36. 36.
    A.S. Aldughaither, H.D. Lasa, Ind. Eng. Chem. Res. 53(40), 15303–15316 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Ahmadpour, M. Taghizadeh, C. R. Chim. 18(8), 834–847 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Prasad, M. Petrov, Solid State Nucl. Magn. Reson. 54(7), 26–31 (2013)PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Angew. Chem. Int. Ed. 52(35), 9172–9175 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Hu, J. Shan, Q. Zhang, Y. Wang, Y.S. Liu, Y.J. Gong, Z.J. Wu, T. Dou, Appl. Catal. A 445(01), 215–220 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Research Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations