Advertisement

A crystallographic study of Sr2+ and K+ ion-exchanged zeolite Y (FAU, Si/Al = 1.56) from binary solution with different mole ratio of Sr2+ and K+

  • Hu Sik Kim
  • Dae Jun Moon
  • Ho Yeon Yoo
  • Jong Sam Park
  • Man ParkEmail author
  • Woo Taik LimEmail author
Article
  • 10 Downloads

Abstract

To study the Sr2+-ion selectivity of zeolite Y (Si/Al = 1.56) in binary solution with different Sr2+ and K+ concentration during exchange, two single-crystals of fully dehydrated, Sr2+- and K+-exchanged zeolites Y were prepared by the flow method using a mixed ion-exchange solution whose Sr(NO3)2:KNO3 mol ratios were 1:1 (crystal 1) and 1:100 (crystal 2), respectively, with a total concentration of 0.05 M, followed by vacuum dehydration at 723 K. Their crystal structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group \( Fd\bar{3}m \), respectively, and were refined to the final error indices R1/wR2 = 0.0429/0.1437 and 0.0356/0.1239 for crystals 1 and 2, respectively. In the structure of |Sr28K19|[Si117Al75O384]-FAU (crystal 1), 28 Sr2+ ions per unit cell occupy four different crystallographically distinct sites; 15, 2, 2, and 9 are at sites I, I′, II′, and II, respectively, whereas, the K+ ions occupy only one site: 19 are at site II. In the structure of |Sr17K41|[Si117Al75O384]-FAU (crystal 2), 17 Sr2+ ions per unit cell occupy three equipoints; 10.5, 2, and 4.5 are at sites I, I′, and II, respectively. The residual 41 K+ ions per unit cell are found at four different sites; 8, 24, 3, and 6 are at sites I′, II, III′a, and III′b, respectively. The degrees of ion exchange are 74.7 and 45.3% for crystals 1 and 2, respectively. This result shows that the degree of Sr2+ exchange decreased sharply by decreasing the initial Sr2+ concentration and increasing the initial K+ concentration in the given ion-exchange solution.

Keywords

Strontium Zeolite Y Ion exchange Competing cation 

Notes

Acknowledgements

The authors wish to thank the staff at Beamline 2D SMC at the Pohang Light Source, Korea, for assistance during data collection. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03029558).

Supplementary material

10934_2019_783_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2103 kb)

References

  1. 1.
    A. Nilchi, R. Sabrei, S. RasouliGarmarodi, A. Bagheri, Appl. Radiat. Isot. 70, 369 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Faghihian, M. Iravani, M. Moayed, M. Ghanadi-Maragheh, Chem. Eng. J. 222, 41 (2013)CrossRefGoogle Scholar
  3. 3.
    R. Yavari, D. Huang, A. Mostofizadeh, J. Radioanal. Nucl. Chem. 285, 703 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, J. Wang, Nucl. Eng. Des. 242, 445 (2012)CrossRefGoogle Scholar
  5. 5.
    M.W. Munthali, E. Johan, H. Aono, N. Matsue, J. Asian Ceram. Soc. 3, 245 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Park, Y. Lee, W.S. Shin, S. Choi, Chem. Eng. J. 162, 685 (2010)CrossRefGoogle Scholar
  7. 7.
    E.H. Borai, R. Harjula, L. Malinen, A. Paajanen, J. Hazard. Mater. 172, 416 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Faghihian, M. Kabiri-Tadi, J. Hazard. Mater. 178, 66 (2010)CrossRefGoogle Scholar
  9. 9.
    A.K. Vipin, S. Ling, B. Fugetsu, Microporous Mesoporous Mater. 224, 84 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Li, H. Liu, T. Liu, M. Guo, B. Qing, X. Ye, Z. Wu, Chem. Eng. J. 157, 401 (2010)CrossRefGoogle Scholar
  11. 11.
    A.M. El-Kamash, J. Hazard. Mater. 151, 432 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Abusafa, H. Yucel, Sep. Purif. Technol. 28, 103 (2002)CrossRefGoogle Scholar
  13. 13.
    I. Smiciklas, S. Dimovic, I. Plecas, Appl. Clay Sci. 35, 139 (2007)CrossRefGoogle Scholar
  14. 14.
    H. Mimura, T. Kanno, J. Nucl. Sci. Technol. 22, 284 (1985)CrossRefGoogle Scholar
  15. 15.
    E. Valcke, B. Engels, A. Cremers, Zeolites 18, 205 (1997)CrossRefGoogle Scholar
  16. 16.
    M.R. El-Naggar, A.M. El-Kamash, M.I. El-Dessouky, A.K. Ghonaim, J. Hazard. Mater. 154, 963 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Merceille, E. Weinzaepfel, Y. Barre, A. Grandjean, Sep. Purif. Technol. 96, 81 (2012)CrossRefGoogle Scholar
  18. 18.
    R.M. Woods, M.E. Gunter, Am. Miner. 86, 424 (2001)CrossRefGoogle Scholar
  19. 19.
    L. Zhaohui, D. Alessi, L. Allen, J. Environ. Qual. 31, 1106 (2002)CrossRefGoogle Scholar
  20. 20.
    C. Liu, J.M. Zachara, S.C. Smith, J. Contam. Hydrol. 68, 217 (2004)CrossRefGoogle Scholar
  21. 21.
    P. Rajec, K. Domianova, J. Radioanal. Nucl. Chem. 275, 503 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Galambos, P. Suchanek, O. Rosskopfova, J. Radioanal. Nucl. Chem. 293, 613 (2012)CrossRefGoogle Scholar
  23. 23.
    S.J. Datta, W.K. Moon, D.Y. Choi, I.C. Hwang, K.B. Yoon, Angew. Chem. Int. Ed. 53, 7203 (2014)CrossRefGoogle Scholar
  24. 24.
    M.J. Kim, M.S. Jeong, Y. Kim, K. Seff, Microporous Mesoporous Mater. 30, 233 (1999)CrossRefGoogle Scholar
  25. 25.
    A. Dyer, A. Chimedtsogzol, L. Campbell, C. Wiliams, Microporous Mesoporous Mater. 95, 172 (2006)CrossRefGoogle Scholar
  26. 26.
    W.T. Lim, S.M. Seo, L. Wang, G.Q. Lu, K. Seff, Microporous Mesoporous Mater. 129, 11 (2010)CrossRefGoogle Scholar
  27. 27.
    A.J. Arvai, C. Nielsen, ADSC Quantum-210 ADX Program (Area Detector System Corporation, Poway, 1993)Google Scholar
  28. 28.
    Z. Otwinowski, W. Minor, Methods Enzymol. 276, 307 (1997)CrossRefGoogle Scholar
  29. 29.
    Bruker-AXS (ver. 6.12). XPREP, Program for the Automatic Space Group Determination. (Bruker AXS Inc., Madison, 2001)Google Scholar
  30. 30.
    G.M. Sheldrick, SHELXL97 Program for the Refinement of Crystal Structures (University of Gottingen, Gottingen, 1997)Google Scholar
  31. 31.
    P.A. Doyle, P.S. Turner, Acta Crystallogr. Sect. A 24, 390 (1968)CrossRefGoogle Scholar
  32. 32.
    J.A. Ibers, W.C. Hamilton (eds.), International Tables for X-ray Crystallography, vol. 4 (Kynoch Press, Birmingham, 1974), pp. 71–98Google Scholar
  33. 33.
    D.T. Cromer, Acta Crystallogr. 18, 17 (1965)CrossRefGoogle Scholar
  34. 34.
    J.A. Ibers, W.C. Hamilton (eds.), International Tables for X-ray Crystallography, vol. 4 (Kynoch Press, Birmingham, 1974), pp. 148–150Google Scholar
  35. 35.
    W. Loewenstein, Am. Miner. 39, 92 (1954)Google Scholar
  36. 36.
    D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974), pp. 93–103Google Scholar
  37. 37.
    H. Van Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen, Introductions to Zeolite Science and Practice (Elsevier, Amsterdam, 2001), p. 44Google Scholar
  38. 38.
    J.M. Lee, S.M. Seo, J.M. Suh, W.T. Lim, J. Porous Mater. 18, 523 (2011)CrossRefGoogle Scholar
  39. 39.
    R.C. Weast, in Handbook of Chemistry and Physics, 70th edn. (The Chemical Rubber Co., Cleveland, 1989/1990)Google Scholar
  40. 40.
    S.B. Jang, Y. Kim, Bull. Korean Chem. Soc. 16, 539 (1995)Google Scholar
  41. 41.
    S.M. Seo, O.S. Lee, H.S. Kim, D.H. Bae, I. Chun, W.T. Lim, Bull. Korean Chem. Soc. 28, 1675 (2007)CrossRefGoogle Scholar
  42. 42.
    H.S. Kim, D.Y. Chung, W.T. Lim, J. Chem. Crystallogr. 44, 269 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryAndong National UniversityAndongKorea
  2. 2.Department of Radiologic TechnologyDaegu Health CollegeDaeguKorea
  3. 3.School of Applied BiosciencesKyungpook National UniversityDaeguKorea

Personalised recommendations