Journal of Porous Materials

, Volume 26, Issue 6, pp 1861–1867 | Cite as

Adsorption of cationic and anionic dyes on montmorillonite in single and mixed wastewater

  • Qian Zhang
  • Ruisen Jing
  • Shifeng Zhao
  • Mi Wu
  • Xijuan Liu
  • Yifei Shao
  • Fengzhu Lv
  • Aiju Liu
  • Zilin MengEmail author


Montmorillonite was employed as adsorbent to remove cationic and anionic dyes respectively and simultaneously. When the dye present singly, it only had a good effect to cationic dye removal. The experimental data well fitted to pseudo-second-order kinetic model, and the adsorption behavior followed the Langmuir model revealed that cationic dye adsorption was a monolayer coverage and charge-limited adsorption process. Molecular arrangement of the contaminants in the interlayer were analyzed by molecular simulation. As the cationic and anionic dyes co-exist, both cationic and anionic dyes could be removed. The adsorption mechanism of anionic dyes, under the circumstances, were investigated through equilibrium experiment, XRD and molecular dynamics simulation. The experimental data showed that anionic dyes in mixed wastewater were fitted Freundlich model well and the mechanism of anionic dyes removal was trapped by hydrophobic interaction on account of organic phase formed by cationic dyes in the interlayer.


Adsorption Montmorillonite Dyes Molecular simulation 



The study was supported by the National Natural Science Foundation of China (Nos. 41671322, 41877122), SDUT and Zibo City Integration Development Project (No. 2016ZBXC102) and Shandong Province Major Science and Technology Innovation Projects (2018CXGC1011).


  1. 1.
    G. Wang, S. Zhang, J. Wang, S. Ma, X. Lu, S. Komarneni, Synthesis of porous Al pillared montmorillonite after pre-intercalation with dodecylamine: textural and thermal properties. J. Porous Mater. 23(6), 1687–1694 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Naik, J. Scholin, B. Goss, Stabilization of phytase enzyme on montmorillonite clay. J. Porous Mater. 23(2), 401–406 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Yu, Y. Han, J. Li, L. Wang, Magnetic carbon aerogel pyrolysis from sodium carboxymethyl cellulose/sodium montmorillonite composite aerogel for removal of organic contamination. J. Porous Mater. 25(3), 657–664 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Valand, A.S. Mahomed, S. Singh, H.B. Friedrich, The influence of Montmorillonite K10 as a support in the nickel catalyzed hydrogenation of octanal. J. Porous Mater. 23(1), 175–183 (2016)CrossRefGoogle Scholar
  5. 5.
    D.A. Almasri, T. Rhadfi, M.A. Atieh, G. McKay, S. Ahzi, High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem. Eng. J. 335, 1–12 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. He, D.B. Jiang, J. Chen, D.Y. Jiang, Y.X. Zhang, Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J. Colloid Interface Sci. 510, 207–220 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Ma, J.J. Hou, H. Yang, Z.L. Xu, Preparation of renewable porous TiO2/PVA composite sphere as photocatalyst for methyl orange degradation. J. Porous Mater. 25(4), 1071–1080 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Liu, J. Ge, L.T. Yang, X. Jiang, L.G. Qiu, Facile preparation of chitosan enwrapping Fe3O4 nanoparticles and MIL-101 (Cr) magnetic composites for enhanced methyl orange adsorption. J. Porous Mater. 23(5), 1363–1372 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Xia, G. Wang, H. Zhang, L. Liu, Y. Yu, L. Wang, A. Chen, Synthesis of bimodal mesoporous carbon nanospheres for methyl orange adsorption. J. Porous Mater. 24(6), 1605–1612 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Borralleras, I. Segura, M.A. Aranda, A. Aguado, Influence of experimental procedure on d-spacing measurement by XRD of montmorillonite clay pastes containing PCE-based superplasticizer. Cem. Concr. Res. 116, 266–272 (2019)CrossRefGoogle Scholar
  11. 11.
    S. Zhu, M. Xia, Y. Chu, M.A. Khan, W. Lei, F. Wang, A. Wang, Adsorption and desorption of Pb(II) on l-lysine modified montmorillonite and the simulation of interlayer structure. Appl. Clay Sci. 169, 40–47 (2019)CrossRefGoogle Scholar
  12. 12.
    S. Wang, Q. Feng, F. Javadpour, Q. Hu, K. Wu, Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: a grand canonical Monte Carlo simulation study. Chem. Eng. J. 355, 76–90 (2019)CrossRefGoogle Scholar
  13. 13.
    J. Ma, Y. Lei, M.A. Khan, F. Wang, Y. Chu, W. Lei, S. Zhu, Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int. J. Biol. Macromol. 124, 557–567 (2019)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Cui, J. Zhang, L.L. Ren, A.L. Cheng, E.Q. Gao, A functional anionic metal–organic framework for selective adsorption and separation of organic dyes. Polyhedron 161, 71–77 (2019)CrossRefGoogle Scholar
  15. 15.
    M. Maruthapandi, J.H. Luong, A. Gedanken, Kinetic, isotherm and mechanism studies of organic dye adsorption on poly(4, 4′-oxybisbenzenamine) and copolymer of poly(4, 4′-oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dots. N. J. Chem. 43(4), 1926–1935 (2019)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, H.L. Liu, D.S. Zhang, L. Geng, A multifunctional anionic 3D Cd(II)-MOF derived from 2D layers catenation: organic dyes adsorption, cycloaddition of CO2 with epoxides and luminescence. Inorg. Chem. Commun. 101, 184–187 (2019)CrossRefGoogle Scholar
  17. 17.
    J.M. Brazier, A.D. Schmitt, S. Gangloff, E. Pelt, F. Chabaux, E. Tertre, Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite). Geochim Cosmochim Acta 250, 324–347 (2019)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, C. Yan, S. Zhou, T. Liang, X. Wen, Preparation of montmorillonite grafted polyacrylic acid composite and study on its adsorption properties of lanthanum ions from aqueous solution. Environ. Sci. Pollut. Res. 26, 1–15 (2019)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, W. Yu, S. He, S. Yu, Y. Chen, L. Lu, H. Jin, Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites. Appl. Clay Sci. 168, 304–311 (2019)CrossRefGoogle Scholar
  20. 20.
    J. Qiu, G.Q. Li, S. Jiang, D.L. Liu, P. Chen, G.F. Wang, Effect of layer charge on adsorption properties of octadecyl trimethyl ammonium chloride by montmorillonite. Sci. Adv. Mater. 11(2), 299–305 (2019)CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, Z. Meng, Y. Zhang, G. Lv, F. Lv, L. Wu, Modification of a Na-montmorillonite with quaternary ammonium salts and its application for organics removal from TNT red water. Water Sci. Technol. 69(9), 1798–1804 (2014)CrossRefGoogle Scholar
  22. 22.
    Z. Meng, F. Lv, X. Li, Q. Zhang, P.K. Chu, S. Komarneni, Y. Zhang, Simultaneous arsenate and alkali removal from alkaline wastewater by in situ formation of Zn–Al layered double hydroxide. Microporous Mesoporous Mater. 227, 137–143 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Meng, Y. Zhang, Z. Zhang, Q. Zhang, P.K. Chu, S. Komarneni, F. Lv, Anomalous but massive removal of two organic dye pollutants simultaneously. J. Hazard. Mater. 318, 54–60 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qian Zhang
    • 1
  • Ruisen Jing
    • 2
  • Shifeng Zhao
    • 2
  • Mi Wu
    • 2
  • Xijuan Liu
  • Yifei Shao
    • 2
  • Fengzhu Lv
    • 3
  • Aiju Liu
    • 1
  • Zilin Meng
    • 1
    Email author
  1. 1.School of Resources and Environmental EngineeringShandong University of TechnologyZiboPeople’s Republic of China
  2. 2.School of Agricultural Engineering and Food ScienceShandong University of TechnologyZiboPeople’s Republic of China
  3. 3.National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingPeople’s Republic of China

Personalised recommendations