Journal of Porous Materials

, Volume 26, Issue 6, pp 1839–1850 | Cite as

Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate

  • Lei He
  • Yaqin Zhang
  • Yane Zheng
  • Qingming JiaEmail author
  • Shaoyun ShanEmail author
  • Yanan Dong


An effective catalyst of MIL-101(Fe)/TiO2 composite was synthesized by solvothermal method. The resultant MIL-101(Fe)/TiO2 was used for advanced oxidation degradation of tetracycline (TC) for the first time. The results indicated that the MIL-101(Fe)/TiO2 showed higher TC degradation efficiency than pure MIL-101(Fe) or TiO2 with the persulfate. Using 1 g L−1 MIL-101(Fe)/TiO2 and persulfate at pH 7, 90.15% degradation rate was achieved under xenon lamp irradiation in 5 min for 20 mg L−1 TC. TiO2 introduced in the composite played an important role in the degradation process, in which TiO2 had a synergetic effect with Fe3+ to generate Fe2+, Ti3+ and radicals. Fe2+ reacted with persulfate to produce Fe3+ and a number of ·OH to degrade TC. This reaction process was so fast that MIL-101(Fe)/TiO2 with persulfate could degrade TC fairly rapidly. A novel TiO2-based metal–organic frameworks (MOFs) composite was more efficient for degrading pharmaceutical wastewater.


MOF Advanced oxidation process TiO2 Degradation Tetracycline Catalyst 



This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51364023, 21766016 and 21566014) and Talent Reserve Project in Yunnan (Grant No. 2015HB014).


  1. 1.
    C. Liu, G. Wu, J. Chen, K. Huang, W. Shi, Fabrication of a visible-light-driven photocatalyst and degradation of tetracycline based on the photoinduced interfacial charge transfer of SrTi3/Fe2O3 nanowires. New J. Chem. 40, 5198–5208 (2016)Google Scholar
  2. 2.
    Y.-Y. Chen, Y.-L. Ma, J. Yang, L.-Q. Wang, J.-M. Lv, C.-J. Ren, Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway. Chem. Eng. J. 307, 15–23 (2017)Google Scholar
  3. 3.
    H. Liu, G. Zhang, C. Liu, L. Li, M. Xiang, Characteristics of chloramphenicol and tetracyclines in municipal sewage and Nanming River of Guiyang City, China. Huan jing ke xue Huanjing kexue 30, 687–692 (2009)PubMedGoogle Scholar
  4. 4.
    Y. Jiang, M. Li, C. Guo, D. An, J. Xu, Y. Zhang, B. Xi, Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China. Chemosphere 112, 267–274 (2014)PubMedGoogle Scholar
  5. 5.
    A. Selvam, K. Kwok, Y. Chen, A. Cheung, K.S. Leung, J.W. Wong, Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong. Environ. Sci. Pollut. Res. 24, 9058–9066 (2017)Google Scholar
  6. 6.
    S.-Z. Li, X.-Y. Li, D.-Z. Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109–114 (2004)Google Scholar
  7. 7.
    J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008)PubMedGoogle Scholar
  8. 8.
    K. Košutić, D. Dolar, D. Ašperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 53, 244–249 (2007)Google Scholar
  9. 9.
    V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review. J. Environ. Manag. 92, 2304–2347 (2011)Google Scholar
  10. 10.
    K.-J. Choi, S.-G. Kim, S.-H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43 (2008)PubMedGoogle Scholar
  11. 11.
    J.L. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004)Google Scholar
  12. 12.
    Y. Belmabkhout, R.S. Pillai, D. Alezi, O. Shekhah, P.M. Bhatt, Z. Chen, K. Adil, S. Vaesen, G. De Weireld, M. Pang, Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H 2 S. J. Mater. Chem. A 5, 3293–3303 (2017)Google Scholar
  13. 13.
    T. Hu, H. Lv, S. Shan, Q. Jia, H. Su, N. Tian, S. He, Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution. RSC Adv. 6, 73741–73747 (2016)Google Scholar
  14. 14.
    T. Hu, Q. Jia, S. He, S. Shan, H. Su, Y. Zhi, L. He, Novel functionalized metal-organic framework MIL-101 adsorbent for capturing oxytetracycline. J. Alloys Compd. 727, 114–122 (2017)Google Scholar
  15. 15.
    N. Tian, Q. Jia, H. Su, Y. Zhi, A. Ma, J. Wu, S. Shan, The synthesis of mesostructured NH2-MIL-101 (Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J. Porous Mater. 23, 1269–1278 (2016)Google Scholar
  16. 16.
    K. Rajeshwar, J.G. Ibanez, Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement (Elsevier, San Diego, 1997)Google Scholar
  17. 17.
    M. Miyata, I. Ihara, G. Yoshid, K. Toyod, K. Umetsu, Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci. Technol. 63, 456–461 (2011)PubMedGoogle Scholar
  18. 18.
    M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541–6569 (2009)PubMedGoogle Scholar
  19. 19.
    L. Hou, L. Wang, S. Royer, H. Zhang, Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 302, 458–467 (2016)PubMedGoogle Scholar
  20. 20.
    S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 179, 552–558 (2010)PubMedGoogle Scholar
  21. 21.
    C. Tan, N. Gao, Y. Deng, W. Rong, S. Zhou, N. Lu, Degradation of antipyrine by heat activated persulfate. Sep. Purif. Technol. 109, 122–128 (2013)Google Scholar
  22. 22.
    Y. Lei, C.-S. Chen, Y.-J. Tu, Y.-H. Huang, H. Zhang, Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ. Sci. Technol. 49, 6838–6845 (2015)PubMedGoogle Scholar
  23. 23.
    P. Villegas-Guzman, J. Silva-Agredo, O. Florez, A.L. Giraldo-Aguirre, C. Pulgarin, R.A. Torres-Palma, Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: effects of pH, chemical nature of additives and pollutant concentration. J. Environ. Manag. 190, 72–79 (2017)Google Scholar
  24. 24.
    L.W. Matzek, K.E. Carter, Sustained persulfate activation using solid iron: kinetics and application to ciprofloxacin degradation. Chem. Eng. J. 307, 650–660 (2017)Google Scholar
  25. 25.
    G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705–3712 (2004)PubMedGoogle Scholar
  26. 26.
    L. Bu, S. Zhou, Z. Shi, C. Bi, S. Zhu, N. Gao, Iron electrode as efficient persulfate activator for oxcarbazepine degradation: performance, mechanism, and kinetic modeling. Sep. Purif. Technol. 178, 66–74 (2017)Google Scholar
  27. 27.
    Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53 (Fe) under visible LED light mediated by persulfate. Appl. Catal. B 202, 165–174 (2017)Google Scholar
  28. 28.
    X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130–136 (2016)Google Scholar
  29. 29.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)PubMedGoogle Scholar
  30. 30.
    Y.K. Seo, J.W. Yoon, J.S. Lee, Y.K. Hwang, C.H. Jun, J.S. Chang, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012)PubMedGoogle Scholar
  31. 31.
    K.-Y.A. Lin, H.-A. Chang, C.-J. Hsu, Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Adv. 5, 32520–32530 (2015)Google Scholar
  32. 32.
    S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101, 86–92 (2014)PubMedGoogle Scholar
  33. 33.
    D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 269, 425–433 (2015)Google Scholar
  34. 34.
    J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017)Google Scholar
  35. 35.
    R.C. Gilson, K.C. Black, D.D. Lane, S. Achilefu, Hybrid TiO2–Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions. Angew. Chem. Int. Ed. 56, 10717–10720 (2017)Google Scholar
  36. 36.
    T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155, 572–579 (2008)PubMedGoogle Scholar
  37. 37.
    I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101. J. Catal. 298, 61–69 (2013)Google Scholar
  38. 38.
    S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Ferey, N. Stock, High-throughput assisted rationalization of the formation of metal organic frameworks in the iron (III) aminoterephthalate solvothermal system. Inorg. Chem. 47, 7568–7576 (2008)PubMedGoogle Scholar
  39. 39.
    M. Hartmann, M. Fischer, Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 164, 38–43 (2012)Google Scholar
  40. 40.
    F. Cui, Q. Deng, L. Sun, Prussian blue modified metal–organic framework MIL-101 (Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 5, 98215–98221 (2015)Google Scholar
  41. 41.
    J. Tang, M. Yang, M. Yang, J. Wang, W. Dong, G. Wang, Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J. Chem. 39, 4919–4923 (2015)Google Scholar
  42. 42.
    L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, Y. Zhang, A novel magnetic MIL-101 (Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 361, 85–94 (2019)PubMedGoogle Scholar
  43. 43.
    A. Murashkevich, A. Lavitskaya, T. Barannikova, I. Zharskii, Infrared absorption spectra and structure of TiO2-SiO2 composites. J. Appl. Spectrosc. 75, 730–734 (2008)Google Scholar
  44. 44.
    T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 700, 175–181 (2004)Google Scholar
  45. 45.
    X. Yue, W. Guo, X. Li, H. Zhou, R. Wang, Core-shell Fe3O4@ MIL-101 (Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7. Environ. Sci. Pollut. Res. 23, 15218–15226 (2016)Google Scholar
  46. 46.
    G. Srinivas, W. Travis, J. Ford, H. Wu, Z.-X. Guo, T. Yildirim, Nanoconfined ammonia borane in a flexible metal–organic framework Fe–MIL-53: clean hydrogen release with fast kinetics. J. Mater. Chem. A 1, 4167–4172 (2013)Google Scholar
  47. 47.
    J.-J. Du, Y.-P. Yuan, J.-X. Sun, F.-M. Peng, X. Jiang, L.-G. Qiu, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 190, 945–951 (2011)PubMedGoogle Scholar
  48. 48.
    H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J. Mol. Catal. A 400, 81–89 (2015)Google Scholar
  49. 49.
    K. Yokota, K. Nakamura, T. Kasuya, S. Tamura, T. Sugimoto, K. Akamatsu, K. Nakao, F. Miyashita, Compositional structure of dual TiNO layers deposited on SUS 304 by an IBAD technique. Surf. Coat. Technol. 158, 568–572 (2002)Google Scholar
  50. 50.
    R. Li, X. Jin, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton oxidation of 2, 4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem. Eng. J. 264, 587–594 (2015)Google Scholar
  51. 51.
    S. Wang, N. Zhou, Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrason. Sonochem. 29, 156–162 (2016)PubMedGoogle Scholar
  52. 52.
    A.J. Jafari, B. Kakavandi, N. Jaafarzadeh, R.R. Kalantary, M. Ahmadi, A.A. Babaei, Fenton-like catalytic oxidation of tetracycline by AC@ Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies. J. Ind. Eng. Chem. 45, 323–333 (2017)Google Scholar
  53. 53.
    I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J. Photochem. Photobiol., A 202, 142–153 (2009)Google Scholar
  54. 54.
    A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012)Google Scholar
  55. 55.
    Y. Su, Z. Wu, Y. Wu, J. Yu, L. Sun, C. Lin, Acid Orange II degradation through a heterogeneous Fenton-like reaction using Fe–TiO2 nanotube arrays as a photocatalyst. J. Mater. Chem. A 3, 8537–8544 (2015)Google Scholar
  56. 56.
    C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213–1223 (2004)PubMedGoogle Scholar
  57. 57.
    Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 298, 225–233 (2016)Google Scholar
  58. 58.
    S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, G.H. Safari, Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. J. Mol. Liq. 241, 704–714 (2017)Google Scholar
  59. 59.
    M. Liu, L.-A. Hou, Q. Li, X. Hu, S. Yu, Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite X–persulfate system under visible light. RSC Adv. 6, 35216–35227 (2016)Google Scholar
  60. 60.
    J. Liu, S. Zhong, Y. Song, B. Wang, F. Zhang, Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 809, 74–79 (2018)Google Scholar
  61. 61.
    G.H. Safari, S. Nasseri, A.H. Mahvi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. J. Environ. Health Sci. Eng. 13, 76 (2015)PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations