Journal of Porous Materials

, Volume 26, Issue 6, pp 1713–1720 | Cite as

MOF-derived highly active Ni/Co/NC electrocatalyst and its application for hydrogen evolution reaction

  • Xiaobing Yang
  • Hao Lin
  • Weiping Hua
  • Juan YangEmail author


The development of electrocatalysts with excellent activity for clean and sustainable H2 has been considered as an efficient way to store energy and meet the increasing energy and environmental demands. In this paper, we used zeolitic imidazolate frameworks-67 (ZIF-67) as precursors to synthesize the highly active N-doped graphene loaded with Ni and Co nanoparticles (Ni/Co/NC) for hydrogen evolution reaction (HER). The physical and electrochemical characterization of all synthesized samples were analyzed by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and HER. The results show that the organic ligands of ZIF-67 were successfully transformed into N-doped graphene after high temperature treatment. Ni element was well dispersed in the supporting graphene and can make the graphene keeping the dodecahedral morphology with hollow structure. Co nanoparticles were encapsulated by a layer of graphene. Electrochemical tests show that Ni/Co/NC800 exhibits excellent performance for hydrogen generation: the onset overpotential is only 125 mV, the Tafel slope is 57.6 mV/dec. The excellent performance of Ni/Co/NC800 makes its being a promising candidate for energy storage and conversion applications.


ZIF-67 Ni/Co/NC Hollow structure Hydrogen evolution reaction 



The authors wish to acknowledge the financial supports from the Fujian Key Laboratory of Advanced Materials, Educational Research Projects for Young and Middle-aged Teachers in Fujian Province (Grant No. JT180549), Natural Science Foundation of Fujian Province (Grant No. 2019J01020797), The Project of Fujian Provincial Key Laboratory of Eco-Inductrial Green Technology (Grant No. WYKF2018-8), Program for Outstanding Young Scientific Research Talents in Fujian Province University (MinKeJiao, 2018, No 47).


  1. 1.
    H. Herring, Energy efficiency-a critical view. Energy 31, 10–20 (2006)Google Scholar
  2. 2.
    X.G. Li, Diversification and localization of energy systems for sustainable development and energy security. Energy Policy 33, 2237–2243 (2005)Google Scholar
  3. 3.
    G.Z. Li, S.W. Niu, L.B. Ma, X. Zhang, Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China. Renew. Energy 34, 1438–1444 (2009)Google Scholar
  4. 4.
    G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070 (2005)Google Scholar
  5. 5.
    J. Goldemberg, Ethanol for a sustainable energy future. Science 315, 808–810 (2007)PubMedGoogle Scholar
  6. 6.
    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)PubMedGoogle Scholar
  7. 7.
    D.S. Kong, J.J. Cha, H.T. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013)Google Scholar
  8. 8.
    X.X. Zou, X.X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmekova, T. Asefa, Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 126, 4461–4465 (2014)Google Scholar
  9. 9.
    S.A. Grigoriew, P. Millet, V.N. Fateev, Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sour. 177, 281–285 (2008)Google Scholar
  10. 10.
    E. Skúlason, G.S. Kalberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson, J.K. Nørskov, Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode. Phys. Chem. Chem. Phys. 9, 3241–3250 (2007)PubMedGoogle Scholar
  11. 11.
    Z.Q. Yao, M.S. Zhu, F.X. Jiang, Y.K. Du, C.Y. Wang, P. Wang, Highly efficient electrocatalystic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J. Mater. Chem. 22, 13707–13713 (2012)Google Scholar
  12. 12.
    D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y.P. Wu, M.C. Lin, M.Y. Guan, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H.J. Dai, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 1587–1592 (2015)PubMedGoogle Scholar
  13. 13.
    Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)PubMedGoogle Scholar
  14. 14.
    E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. 126, 5531–5534 (2014)Google Scholar
  15. 15.
    S.J. Xu, D. Li, P.Y. Wu, One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 25, 1127–1136 (2015)Google Scholar
  16. 16.
    D. Viry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)Google Scholar
  17. 17.
    J. Deng, P.J. Ren, D.H. Deng, L. Yu, F. Yang, X.H. Bao, Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 7, 1919–1923 (2014)Google Scholar
  18. 18.
    W.J. Zhou, T.L. Xiong, C.H. Shi, J. Zhou, N.W. Zhu, L.G. Li, Z.H. Tang, S.W. Chen, Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 128, 8556–8560 (2016)Google Scholar
  19. 19.
    Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015)Google Scholar
  20. 20.
    U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 1, 120–127 (2011)Google Scholar
  21. 21.
    Y.B. Huang, Y.H. Zhang, X.X. Cheng, D.S. Wu, Z.G. Yi, R. Cao, Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. 50, 10115–10117 (2014)Google Scholar
  22. 22.
    X.B. Yang, Z.D. Wen, Z.L. Wu, X.T. Luo, Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorg. Chem. Front. 5, 687–693 (2018)Google Scholar
  23. 23.
    Y.S. Bae, C.Y. Lee, K.C. Kim, O.K. Farha, P. Nickias, J.T. Hupp, S.T. Nguyen, R.Q. Snurr, High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem. Int. Ed. 51, 1857–1860 (2012)Google Scholar
  24. 24.
    X.P. Dai, M.Z. Liu, Z.Z. Li, A. Jin, Y.D. Ma, X.L. Huang, H. Sun, H. Wang, X. Zhang, Molybdenum polysulfide anchored on porous Zr-metal organic framework to enhance the performance of hydrogen evolution reaction. J. Phys. Chem. C 120, 12539–12548 (2016)Google Scholar
  25. 25.
    T. Tian, L. Huang, L.H. Ai, J. Jiang, Surface anion-rich NiS2 hollow microspheres derived from metal-organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5, 20985–20992 (2017)Google Scholar
  26. 26.
    Y.F. Zhang, X.J. Bo, C. Luhana, H. Wang, M. Li, L.P. Guo, Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 49, 6885–6887 (2013)Google Scholar
  27. 27.
    X.B. Yang, J. Chen, Y.Q. Chen, P.J. Feng, H.X. Lai, J.T. Li, X.T. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano Micro Lett. 10, 15 (2018)Google Scholar
  28. 28.
    M. Huang, X.L. Zhao, F. Li, W. Li, B. Zhao, Y.X. Zhang, Synthesis of Co3O4/SnO2@MnO2 core-shell nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 12852–12857 (2015)Google Scholar
  29. 29.
    Y.Q. Chen, J.T. Li, G.H. Yue, X.T. Luo, Novel Ag@nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano Micro Lett. 9, 32 (2017)Google Scholar
  30. 30.
    J.P. Hu, J. Chen, H. Lin, R.L. Liu, X.B. Yang, MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction. J. Solid State Chem. 259, 1–4 (2018)Google Scholar
  31. 31.
    L.J. Li, P.C. Dai, X. Gu, Y. Wang, L.T. Yan, X.B. Zhao, High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A 5, 789–795 (2017)Google Scholar
  32. 32.
    K.L. Jiao, Z.P. Kang, B. Wang, S.Q. Jiao, Y. Jiang, Z.Q. Hu, Applying Co3O4@nanoporous carbon to nonenzymatic glucose biofuel cell and biosensor. Electroanalysis 30, 1–9 (2018)Google Scholar
  33. 33.
    M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266–274 (2017)Google Scholar
  34. 34.
    J. Yuan, J. Wen, Q. Gao, S. Chen, J. Li, X. Li, Y. Fang, Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans. 44, 1680–1689 (2015)PubMedGoogle Scholar
  35. 35.
    C.H. Zhang, L. Fu, N. Liu, M.H. Liu, Y.Y. Wang, Z.F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23, 1020–1024 (2011)PubMedGoogle Scholar
  36. 36.
    K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, R. Atanassov, Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 49, 2539–2541 (2013)Google Scholar
  37. 37.
    F.M. Hassan, V. Chabot, J.D. Li, B.K. Kim, L. Ricardez-Sandoval, A.P. Yu, Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 1, 2904–2912 (2013)Google Scholar
  38. 38.
    M. Chu, L. Wang, X. Li, M.J. Hou, N. Li, Y.Z. Dong, X.Z. Li, Z.Z. Xie, Y.W. Lin, W.Q. Cai, C.C. Zhang, Carbon coated nickel-Nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim. Acta 264, 284–291 (2017)Google Scholar
  39. 39.
    X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 5, 7191–7199 (2017)Google Scholar
  40. 40.
    L. Liao, S.N. Wang, J.J. Xiao, X.J. Bian, Y.H. Zhang, M.D. Scanlon, X.L. Hu, Y. Tang, B.H. Liu, H.H. Girault, A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014)Google Scholar
  41. 41.
    H.L. Lin, Z.P. Shi, S.N. He, X. Yu, S.N. Wang, Q.S. Gao, Y. Tang, Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7, 3399–3405 (2016)PubMedPubMedCentralGoogle Scholar
  42. 42.
    J. Jiang, Q.X. Liu, C.M. Zeng, L.H. Ai, Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 5, 16929–16935 (2017)Google Scholar
  43. 43.
    Y. Cui, C.W. Zhou, X.Z. Li, Y. Gao, J. Zhang, High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochim. Acta 228, 428–435 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaobing Yang
    • 1
    • 3
    • 4
  • Hao Lin
    • 1
    • 3
    • 4
  • Weiping Hua
    • 1
    • 3
    • 4
  • Juan Yang
    • 2
    Email author
  1. 1.College of Ecology and Resource EngineeringWuyi UniversityWuyishanChina
  2. 2.Institute of Chemical Safety, School of Safety Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.Fujian Provincial Key Laboratory of Eco-Inductrial Green TechnologyWuyi UniversityWuyishanChina
  4. 4.BETRC, Provincial Bamboo Engineering Technology Research Center of FujianWuyishanChina

Personalised recommendations