Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1699–1712 | Cite as

Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation

  • Huynh Thi Minh Thanh
  • Nguyen Thi Thanh Tu
  • Nguyen Phi Hung
  • Tran Ngoc Tuyen
  • Tran Xuan Mau
  • Dinh Quang KhieuEmail author
Article

Abstract

In this study, a facile hydrothermal method was used to prepare Fe3O4/MIL-101 composite as a photocatalyst. The resulting composite was characterized using X-ray diffraction, scanning electron microscopy, nitrogen adsorption/desorption isotherms, thermal analysis, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflection spectroscopy. The Fe3O4/MIL-101 composite possesses a large surface area and mesoporous structure and exhibits a good photocatalytic activity for the MB degradation in the visible light region. A kinetic model for dye degradation over this heterogeneous catalyst was proposed by combining the parameters of the Langmuir isotherms and the kinetics of the unimolecular reaction. The proposed model fixes well with the experimental data. The mechanism of MB photocatalytic degradation is also addressed. The catalyst is stable after three recycles, which makes it a potential candidate for environmental restoration.

Keywords

MIL-101 Fe3O4/MIL-101 Photocatalyst Visible light 

Notes

Acknowledgements

This research was sponsored by Hue University under Decision No. 1208/QĐ-DHH.

References

  1. 1.
    H. Safajou, H. Khojasteh, M. Salavati-Niasari, S. Mortazavi-Derazkola, Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 498, 423–432 (2017)PubMedGoogle Scholar
  2. 2.
    M. Ghanbari, M. Salavati-Niasari, Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg. Chem. 57, 11443–11455 (2018)PubMedGoogle Scholar
  3. 3.
    M. Ghanbari, F. Ansari, M. Salavati-Niasari, Simple synthesis-controlled fabrication of thallium cadmium iodide nanostructures via a novel route and photocatalytic investigation in degradation of toxic dyes. Inorgan. Chim. Acta 455, 88–97 (2017)Google Scholar
  4. 4.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Adv. 5, 33792–33800 (2015)Google Scholar
  5. 5.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties. New J. Chem. 39, 3948–3955 (2015)Google Scholar
  6. 6.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)Google Scholar
  7. 7.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Facile fabrication of Dy2Sn2O72 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Colloid Interface Sci. 497, 298–308 (2017)PubMedGoogle Scholar
  8. 8.
    T. Tachikawa, J.R. Choi, M. Fujitsuka, T. Majima, MOF-5 Tachikawa.pdf, J. Phys. Chem, C 112, 14090–14101 (2008)Google Scholar
  9. 9.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005)Google Scholar
  10. 10.
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)Google Scholar
  11. 11.
    H.B.T. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem. Commun. 48, 2140–2142 (2012)Google Scholar
  12. 12.
    A. Corma, H. García, F.X. Llabrés i Xamena, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).  https://doi.org/10.1021/cr9003924 CrossRefPubMedGoogle Scholar
  13. 13.
    N.T.S. Phan, T.T. Nguyen, Q.H. Luu, L.T.L. Nguyen, Paal-Knorr reaction catalyzed by metal-organic framework IRMOF-3 as an efficient and reusable heterogeneous catalyst. J. Mol. Catal. A 363–364, 178–185 (2012)Google Scholar
  14. 14.
    K.S. Min, M.P. Suh, Silver(I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J. Am. Chem. Soc. 122, 6834–6840 (2000)Google Scholar
  15. 15.
    P.N. Dave, L.V. Chopda, Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014, 1–14 (2014)Google Scholar
  16. 16.
    T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng. J. 101, 1–50 (2016)Google Scholar
  17. 17.
    X. Yue, W. Guo, X. Li, H. Zhou, R. Wang, Core-shell Fe3O4@ MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of acid orange 7. Environ. Sci. Pollut. Res. 101, 1629–1658 (2016)Google Scholar
  18. 18.
    K. Folens, K. Leus, N.R. Nicomel, M. Meledina, S. Turner, G. Van Tendeloo, G. Du Laing, P. Van Der Voort, Fe3O4@MIL-101—a selective and regenerable adsorbent for the removal of as species from water. Eur. J. Inorg. Chem. 2016, 4395–4401 (2016)Google Scholar
  19. 19.
    M. Saikia, D. Bhuyan, L. Saikia, Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New J. Chem. 39, 64–67 (2015)Google Scholar
  20. 20.
    Z.W. Jiang, Y.F.L. Fu Qiang Dai, C.Z. Huang, Facile synthesis of Fe3O4/MIL-101(Fe) composite with enhanced catalytic performance. RSC Adv. 1, 1–3 (2016)Google Scholar
  21. 21.
    L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A 1, 11473–11482 (2013)Google Scholar
  22. 22.
    Y. Xu, Q. Chen, H. Yang, M. Lv, Q. He, X. Liu, F. Wei, Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101 composite. Mater. Sci. Semicond. Process. 36, 115–123 (2015)Google Scholar
  23. 23.
    L. Wang, L. Zan, WO3 in suit embed into MIL-101 for enhancement charge carrier separation of photocatalyst. Sci. Rep. 9, 4860–4872 (2019)PubMedPubMedCentralGoogle Scholar
  24. 24.
    T. Zhou, G. Zhang, H. Zhang, H. Yang, P. Ma, X. Li, X. Qiu, G. Liu, Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3 PO4/MIL-101/NiFe2O4 composite. Catal. Sci. Technol. 8, 2402–2416 (2018)Google Scholar
  25. 25.
    D. Ding, Z. Jiang, Q. Ouyang, L. Wang, Y. Zhang, L. Zan, Enhanced photocatalytic activity and mechanism insight of MnOx/MIL-101. J. Taiwan Inst. Chem. Eng. 82, 226–232 (2018)Google Scholar
  26. 26.
    M. Lv, H. Yang, Y. Xu, Q. Chen, X. Liu, F. Wei, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrapping. J. Environ. Chem. Eng. 3, 1003–1008 (2015)Google Scholar
  27. 27.
    A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, DC, 1985)Google Scholar
  28. 28.
    L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi). Dalt. Trans. 42, 13649–13657 (2013)Google Scholar
  29. 29.
    T. Van Vu, H. Kosslick, A. Schulz, J. Harloff, E. Paetzold, M. Schneider, J. Radnik, N. Steinfeldt, G. Fulda, U. Kragl, Selective hydroformylation of olefins over the rhodium supported large porous metal-organic framework MIL-101. Appl. Catal. A 468, 410–417 (2013)Google Scholar
  30. 30.
    S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal-organic precursors. Mater. Res. Bull. 47, 3148–3159 (2012)Google Scholar
  31. 31.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 27, 2066–2075 (2016)Google Scholar
  32. 32.
    H. Ait Ahsaine, A. El Jaouhari, A. Slassi, M. Ezahri, A. Benlhachemi, B. Bakiz, F. Guinneton, J.R. Gavarri, Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv. 6, 101105–101114 (2016)Google Scholar
  33. 33.
    Y. Xu, M. Lv, H. Yang, Q. Chen, X. Liu, F. Wei, BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity. RSC Adv. 5, 43473–43479 (2015)Google Scholar
  34. 34.
    K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol., A 132, 99–104 (2000)Google Scholar
  35. 35.
    M. Ghanbari, S. Gholamrezaei, M. Salavati-Niasari, Ag2CdI4: synthesis, characterization and investigation the strain lattice and grain size. J. Alloys Compd. 667, 115–122 (2016)Google Scholar
  36. 36.
    A. Jarrah, S. Farhadi, K6P2W18O62 encapsulated into magnetic Fe3O4/MIL-101 (Cr) metal-organic framework: a novel magnetically recoverable nanoporous adsorbent for ultrafast treatment of aqueous organic pollutants. RSC Adv. 8, 37976–37992 (2018)Google Scholar
  37. 37.
    L. Nirumand, S. Farhadi, A. Zabardasti, A. Khataee, Copper ferrite nanoparticles supported on MIL-101/reduced graphene oxide as an efficient and recyclable sonocatalyst. J. Taiwan Inst. Chem. Eng. 93, 674–685 (2018)Google Scholar
  38. 38.
    F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4, 27654–27660 (2014)Google Scholar
  39. 39.
    I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)Google Scholar
  40. 40.
    H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M. Gao, ZnO-graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012)Google Scholar
  41. 41.
    Y. Wang, R. Shi, J. Lin, Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl. Catal. B 100, 179–183 (2010)Google Scholar
  42. 42.
    P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. J. Catal. 260, 75–80 (2008)Google Scholar
  43. 43.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)Google Scholar
  44. 44.
    F. Jiang, T. Yan, H. Chen, A. Sun, C. Xu, X. Wang, A g-C3 N4 -CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. Appl. Surf. Sci. 295, 164–172 (2014)Google Scholar
  45. 45.
    T.J. Whang, M.T. Hsieh, H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci. 258, 2796–2801 (2012)Google Scholar
  46. 46.
    J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem. 183, 1359–1364 (2010)Google Scholar
  47. 47.
    Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan, C. Xu, Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure. Appl. Catal. B 185, 307–314 (2016)Google Scholar
  48. 48.
    D. Channei, Fe3O4/SiO2/CeO2 core-shell magnetic nanoparticles as photocatalyst. Environ. Sci. (2014) 1–9. http://environment.scientific-journal.com
  49. 49.
    H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 355705, 1–8 (2012)Google Scholar
  50. 50.
    A. Elaziouti, Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation. J. King Saud. Univ. Sci. 27, 120–135 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Huynh Thi Minh Thanh
    • 1
    • 2
  • Nguyen Thi Thanh Tu
    • 3
  • Nguyen Phi Hung
    • 2
  • Tran Ngoc Tuyen
    • 1
  • Tran Xuan Mau
    • 1
  • Dinh Quang Khieu
    • 1
    Email author
  1. 1.University of Sciences, Hue UniversityHueVietnam
  2. 2.Department of ChemistryQui Nhon UniversityQui NhonVietnam
  3. 3.Institute for Environmental ScienceNguyen Tat Thanh UniversityHo Chi MinhVietnam

Personalised recommendations