Journal of Porous Materials

, Volume 26, Issue 6, pp 1649–1656 | Cite as

The construction of three-dimensionally ordered macroporous (Fe, Zn, Cu, Co)/LaMnO3 with controllable gelation rate and their catalytic combustion properties

  • Chao Ren
  • Zhihua Zhang
  • Renchun YangEmail author


The gelation rate of LaMnO3 colloid was successfully modulated by introducing trace of tartaric acid and nitric acid simultaneously to construct 3DOM LaMnO3. To enhance surface oxygen vacancies, Fe, Zn, Cu and Co metal oxides were introduced on the surface of 3DOM LaMnO3 to modulate their surface composition, respectively. The morphology, crystalline, composition and reducibility of the prepared catalysts were characterized by SEM, XRD, XPS and TPR, respectively. The results showed that the surface oxygen defects can be enhanced distinctly with the introduction of metal oxides. Among the four metal oxides modified LaMnO3, the Co/LaMnO3 sample exhibited highest oxygen defects content and lowest reduction temperature. The catalytic properties of the five samples follow as the order: LaMnO3 < Fe/LaMnO3 < Zn/LaMnO3 ≈ Cu/LaMnO3 < Co/LaMnO3, which is consisted with that of their surface oxygen vacancies content, indicating that oxygen vacancies content is a crucial factor on catalytic oxidation of ethyl acetate.


LaMnO3 Gelation rate Oxygen vacancies Ethyl acetate 



This work is supported by National Nature Science Foundation of China (51572004, 21504001), Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (KJ2016SD06), Natural Science Fund for Distinguished Young Scholars from Anhui Polytechnic University (2016JQ01), and Top-notch Talent Cultivation Plan from Anhui Polytechnic University (2016BJRC002).


  1. 1.
    M.B. Costa, M.A. Bizeto, J. Porous Mat. 25, 1603–1609 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Yousatit, T. Jittapasata, N. Leelaphattharaphan, S. Nuntang, C. Ngamcharussrivichai, J. Porous Mat. 25, 1611–1623 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Ravandi, R. Khoshbin, R. Karimzadeh, J. Porous Mat. 25, 451–456 (2018)CrossRefGoogle Scholar
  4. 4.
    B. Szczęśniak, Ł. Osuchowski, J. Choma, M. Jaroniec, J. Porous Mat. 25, 621–627 (2018)CrossRefGoogle Scholar
  5. 5.
    B.T. Holland, C.F. Blanford, A. Stein, Science 281, 538–540 (1998)CrossRefGoogle Scholar
  6. 6.
    X. Ma, T. Wang, M. Zhang, W. Zhu, Z. Zhang, H. Zhang, Catal. Lett. 148, 660–670 (2018)CrossRefGoogle Scholar
  7. 7.
    B. Jin, Y. Wei, Z. Zhao, J. Liu, Y. Li, R. Li, A. Duan, Chin. J. Catal. 38, 1629–1641 (2017)CrossRefGoogle Scholar
  8. 8.
    S.G. Rudisill, N.M. Hein, D. Terzic, A. Stein, Chem. Mater. 25, 745–753 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Wang, W. Zhang, Z. Zheng, Y. Gao, K. Ma, J. Ye, Alloy. Compd. 724, 720–727 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Yang, C. Ren, X. Teng, Z. Chen, S. Wu, W. Zhang, Catal. Lett. 147, 727–737 (2017)CrossRefGoogle Scholar
  11. 11.
    D. Chen, D. He, J. Lu, L. Zhong, F. Liu, J. Liu, J. Yu, Appl. Catal. B 218, 249–259 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Toloman, A. Popa, M. Stefan, O. Pana, Mat. Sci. Semicon. Proc. 71, 61–68 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Appl. Catal. A 235, 79–92 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, H. Dai, Y. Du, J. Deng, L. Zhang, Z. Zhao, C.T. Au, J. Catal. 287, 149–160 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Machocki, T. Ioannides, B. Stasinska, W. Gac, J. Catal. 227, 282–296 (2004)CrossRefGoogle Scholar
  16. 16.
    Z. Wei, J. Sun, Y. Li, A.K. Datye, Y. Wang, Chem. Soc. Rev. 41, 7994–8008 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Li, Y. Hu, S. Xie, Y. Huang, Y. Tong, X. Lu, Chem. Commun. 50, 4341–4343 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biological and Chemical EngineeringAnhui Polytechnic UniversityWuhuChina

Personalised recommendations