Journal of Porous Materials

, Volume 26, Issue 6, pp 1657–1665 | Cite as

Characterization and catalytic performance evaluation of a novel heterogeneous mesoporous catalyst for methanol–acetic acid esterification

  • Veli ŞimşekEmail author
  • Samet ŞahinEmail author


In this study, a novel heterogeneous catalyst based on silicotungstic acid (STA) has been synthesised using hydrothermal and wet-impregnation methods for methanol–acetic acid esterification. Active compound STA was loaded on MCM-48 support material to compose proposed catalysis. Tungsten (W) to silica (Si) molar ratios were set as 5%, 10%, 20% and 40%. Characterizations of MCM-48 and STA/MCM-48 catalysts were performed using BET, XRD, FT-IR, DRIFT, TGA/DTA, SEM, and EDX mapping analysis. Results showed successful synthesis of the novel catalyst with good thermal stability and formation of both Brønsted acid and Lewis acid sites. The catalytic activity was also investigated in methyl acetate esterification reaction and it was shown that temperature, reaction time and the molar ratio of the reactants had significant effect on conversion rate. The highest catalytic activity was obtained as 84% with 20% catalyst at feed ratio of 1:3 (metanol:acetic acid, 353 K, 27 h).


STA MCM-48 Esterification Catalytic activity Wet-impregnation Hydrothermal method 


Supplementary material

10934_2019_764_MOESM1_ESM.docx (645 kb)
Supplementary material 1 (DOCX 645 kb)


  1. 1.
    F. Rajabi, M. Abdollahi, R. Luque, Solvent-free esterification of carboxylic acids using supported iron oxide nanoparticles as an efficient and recoverable catalyst. Materials (Basel, Switzerland) 9(7), 557 (2016)Google Scholar
  2. 2.
    I. Sádaba, M. López Granados, A. Riisager, E. Taarning, Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chem. 17(8), 4133–4145 (2015)Google Scholar
  3. 3.
    Y. Liu, E. Lotero, J.G. Goodwin Jr., A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 242(2), 278–286 (2006)Google Scholar
  4. 4.
    R.M. de Almeida, F.T. Souza, M.A. Júnior, N.J. Albuquerque, S.M. Meneghetti, M.R. Meneghetti, Improvements in acidity for TiO2 and SnO2 via impregnation with MoO3 for the esterification of fatty acids. Catal. Commun. 46, 179–182 (2014)Google Scholar
  5. 5.
    R. Sirsam, D. Hansora, G.A. Usmani, A mini-review on solid acid catalysts for esterification reactions. J. Inst. Eng (India) Ser. E 97(2), 167–181 (2016)Google Scholar
  6. 6.
    M.R. Abukhadra, M.A. Sayed, K + trapped kaolinite (Kaol/K +) as low cost and eco-friendly basic heterogeneous catalyst in the transesterification of commercial waste cooking oil into biodiesel. Energy Convers. Manage. 177, 468–476 (2018)Google Scholar
  7. 7.
    A. Hykkerud, J.M. Marchetti, Esterification of oleic acid with ethanol in the presence of Amberlyst 15. Biomass Bioenerg. 95, 340–343 (2016)Google Scholar
  8. 8.
    V.N. Mutlu, S. Yilmaz, Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Appl. Catal. A 522, 194–200 (2016)Google Scholar
  9. 9.
    J. Bedard, H. Chiang, A. Bhan, Kinetics and mechanism of acetic acid esterification with ethanol on zeolites. J. Catal. 290, 210–219 (2012)Google Scholar
  10. 10.
    S. Veli, A. Pinar, Characterization and catalytic performance of modified sba-16 in liquid phase reaction. Int. J. Chem. Reactor Eng. (2018). CrossRefGoogle Scholar
  11. 11.
    M. Mekala, V.R. Goli, Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst. Chin. J. Chem. Eng. 23(1), 100–105 (2015)Google Scholar
  12. 12.
    R. Koster, B. van der Linden, E. Poels, A. Bliek, The mechanism of the gas-phase esterification of acetic acid and ethanol over MCM-41. J. Catal. 204(2), 333–338 (2001)Google Scholar
  13. 13.
    J.H. Sepúlveda, C.R. Vera, J.C. Yori, J.M. Badano, D. Santarosa, D. Mandelli, H3PW12O40 (HPA), an efficient and reusable catalyst for biodiesel production related reactions: esterification of oleic acid and etherification of glycerol. Quim. Nova 34(4), 601–606 (2011)Google Scholar
  14. 14.
    M.A. Hanif, S. Nisar, U. Rashid, Supported solid and heteropoly acid catalysts for production of biodiesel. Catal. Rev. 59(2), 165–188 (2017)Google Scholar
  15. 15.
    G. Øye, J. Sjöblom, M. Stöcker, Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Coll. Interface. Sci. 89, 439–466 (2001)Google Scholar
  16. 16.
    W. Qian, H. Wang, J. Chen, Y. Kong, Spherical V-Fe-MCM-48: the synthesis, characterization and hydrothermal stability. Materials 8(4), 1752–1765 (2015)PubMedPubMedCentralGoogle Scholar
  17. 17.
    K. Bachari, R. Guerroudj, M. Lamouchi, Catalytic behavior of gallium-containing mesoporous silicas. Arab. J. Chem. 10, S301–S305 (2017)Google Scholar
  18. 18.
    S. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal. 3(8), 1855–1864 (2013)Google Scholar
  19. 19.
    R. Ouargli, R. Hamacha, N. Benharrats, A. Boos, A. Bengueddach, β-diketone functionalized SBA-15 and SBA-16 for rapid liquid–solid extraction of copper. J. Porous Mater. 22(2), 511–520 (2015)Google Scholar
  20. 20.
    Y. Ueno, A. Tate, O. Niwa, H.-S. Zhou, T. Yamada, I. Honma, High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices. Anal. Bioanal. Chem. 382(3), 804–809 (2005)PubMedGoogle Scholar
  21. 21.
    J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, X. Li, Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16. Sens. Actuat. B Chem. 136(2), 392–398 (2009)Google Scholar
  22. 22.
    B. Boukoussa, R. Hamacha, A. Morsli, A. Bengueddach, Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab. J. Chem. 10, S2160–S2169 (2017)Google Scholar
  23. 23.
    M.M.M. Abd El-Wahab, A.A. Said, Phosphomolybdic acid supported on silica gel and promoted with alkali metal ions as catalysts for the esterification of acetic acid by ethanol. J. Mol. Catal. A Chem. 240(1), 109–118 (2005)Google Scholar
  24. 24.
    V. Brahmkhatri, A. Patel, Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41. Fuel 102, 72–77 (2012)Google Scholar
  25. 25.
    W. Trakarnpruk, Platinum/phosphotungstic acid/(Zr)MCM-41 catalysts in glycerol dehydration. Mendeleev Commun. 24(3), 167–169 (2014)Google Scholar
  26. 26.
    D.J. Thompson, Y. Zhang, T. Ren, Polyoxometalate [γ-SiW10O34(H2O)2]4—on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J. Mol. Catal. A Chem. 392, 188–193 (2014)Google Scholar
  27. 27.
    N.M. Deraz, The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods. J. Ind. Environ. Chem. 2(2), 19–21 (2018)Google Scholar
  28. 28.
    A. Ciftci, D. Varisli, K. Cem Tokay, N. Aslı Sezgi, T. Dogu, Dimethyl ether, diethyl ether & ethylene from alcohols over tungstophosphoric acid based mesoporous catalysts. Chem. Eng. J. 207–208, 85–93 (2012)Google Scholar
  29. 29.
    P.E. JagadeeshBabu, K. Sandesh, M.B. Saidutta, Kinetics of esterification of acetic acid with methanol in the presence of ion exchange resin catalysts. Ind. Eng. Chem. Res. 50(12), 7155–7160 (2011)Google Scholar
  30. 30.
    R. Rönnback, T. Salmi, A. Vuori, H. Haario, J. Lehtonen, A. Sundqvist, E. Tirronen, Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chem. Eng. Sci. 52(19), 3369–3381 (1997)Google Scholar
  31. 31.
    M.R. Altıokka, A. Çıtak, Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst. Appl. Catal. A 239(1), 141–148 (2003)Google Scholar
  32. 32.
    H. Li, S. Wang, F. Ling, J. Li, Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis. J. Mol. Catal. A: Chem. 244(1–2), 33–40 (2006)Google Scholar
  33. 33.
    P. Solanki, A. Patel, In vitro release of l-arginine and cysteine from MCM-48: a study on effect of size of active biomolecules on release rate. J. Porous Mater. 25(5), 1489–1498 (2018)Google Scholar
  34. 34.
    M. Shaban, M.R. Abukhadra, A. Hamd, Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal. Clean Technol. Environ. Policy 20(1), 13–28 (2018)Google Scholar
  35. 35.
    H. Uhlig, T. Muenster, G. Kloess, S.G. Ebbinghaus, W.-D. Einicke, R. Gläser, D. Enke, Synthesis of MCM-48 granules with bimodal pore systems via pseudomorphic transformation of porous glass. Microporous Mesoporous Mater. 257, 185–192 (2018)Google Scholar
  36. 36.
    Q.-Y. Liu, W.-L. Wu, J. Wang, X.-Q. Ren, Y.-R. Wang, Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol. Microporous Mesoporous Mater. 76(1), 51–60 (2004)Google Scholar
  37. 37.
    F.J. Méndez, A. Llanos, M. Echeverría, R. Jáuregui, Y. Villasana, Y. Díaz, G. Liendo-Polanco, M.A. Ramos-García, T. Zoltan, J.L. Brito, Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel 110, 249–258 (2013)Google Scholar
  38. 38.
    Y. Duan, D. Zhai, X. Zhang, J. Zheng, C. Li, Synthesis of CuO/Ti-MCM-48 photocatalyst for the degradation of organic pollutions under solar-simulated irradiation. Catal. Lett. 148(1), 51–61 (2018)Google Scholar
  39. 39.
    C. Sangwichien, G. Aranovich, M. Donohue, Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf. A 206(1–3), 313–320 (2002)Google Scholar
  40. 40.
    O.C. Gobin, SBA-16 materials: synthesis, diffusion and sorption properties (Laval University, Quebec, 2006), p. 80Google Scholar
  41. 41.
    C. Sener, T. Dogu, G. Dogu, Effects of synthesis conditions on the structure of Pd incorporated MCM-41 type mesoporous nanocomposite catalytic materials with high Pd/Si ratios. Microporous Mesoporous Mater. 94(1), 89–98 (2006)Google Scholar
  42. 42.
    K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark, K.K. Unger, Characterization of MCM-48 materials. Langmuir 16(10), 4648–4654 (2000)Google Scholar
  43. 43.
    V. Zeleňák, D. Halamová, M. Almáši, L. Žid, A. Zeleňáková, O. Kapusta, Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin. Appl. Surf. Sci. 443, 525–534 (2018)Google Scholar
  44. 44.
    V. Şimşek, K. Mürtezaoğlu, Characterizations and catalytic activities investigation of synthesized solid-based heterogeneous catalysts in the esterification reaction. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik. 19(2), 422–432 (2018)Google Scholar
  45. 45.
    J.A. Wang, L.F. Chen, L.E. Noreña, J. Navarrete, M.E. Llanos, J.L. Contreras, O. Novaro, Mesoporous structure, surface acidity and catalytic properties of Pt/Zr–MCM-41 catalysts promoted with 12-tungstophosphoric acid. Microporous Mesoporous Mater. 112(1), 61–76 (2008)Google Scholar
  46. 46.
    B. Torabi, E. Ameri, Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem. Eng. J. 288, 461–472 (2016)Google Scholar
  47. 47.
    P. Verma, K. Kaur, R.K. Wanchoo, A.P. Toor, Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature. J. Photochem. Photobiol. A 336, 170–175 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringBilecik Şeyh Edebali UniversityBilecikTurkey
  2. 2.Department of Bioengineering, Faculty of EngineeringBilecik Şeyh Edebali UniversityBilecikTurkey
  3. 3.Biotechnology Application and Research CentreBilecik Şeyh Edebali UniversityBilecikTurkey

Personalised recommendations