Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1667–1677 | Cite as

Pd-KIT-6: synthesis of a novel three-dimensional mesoporous catalyst and studies on its enhanced catalytic applications

  • Suman Chirra
  • Suresh Siliveri
  • Ajay Kumar Adepu
  • Srinath Goskula
  • Sripal Reddy Gujjula
  • Venkatathri NarayananEmail author
Article

Abstract

Synthesis of a novel three-dimensional mesoporous Pd-KIT-6 is carried out by a room temperature sol–gel method. The synthesised material is well crystalline observed from the Small angle powder X-ray diffraction. Calcination at 550 °C for 8 h retains the structure. The particle sizes are in the micron range. Si/Pd ratio of the as-synthesized material is found to be 45 against the input ratio 100. Transmission electron micrograph reveals the presence of the porous hexagonal structure. Thermogravimetric studies reveal that the KIT-6 (Korea Advanced Institute of Science and Technology number 6) undergo less weight-loss compared to Pd-KIT-6, which indicates the material is more crystalline than its metal-free counterpart due to the enhanced crystallisation rate. These results also supported by BET-surface area and Transmission electron microscopic picture. The 960 cm−1 band at Fourier transform Infrared spectroscopic analysis shows that the incorporation of Pd in the framework. These FT-IR results also supported by Raman Spectroscopic analysis. Electron spin resonance spectroscopic analysis shows that the Palladium is present in the +2 oxidation state in as-synthesized samples. Diffused reflectance Ultraviolet–Visible spectroscopic results show that Palladium is in tetrahedral coordination. Microwave irradiated Suzuki–Miyaura (SM) cross-coupling reactions studied by using the Pd-KIT-6 catalyst in detail without any organic solvent at 100 °C for 10 min. The reaction carried out in the presence of phenyl iodide, phenylboronic (PhB(OH)2), and K2CO3 produce biphenyl, with 98% yield. Change of halide to Phenyl bromide gave similar results, but Phenyl chloride gave lesser conversion (20%). It is due to the electronegativity difference between the halides. A plausible reaction mechanism is also proposed.

Keywords

Three-dimensional Mesoporous Pd-KIT-6 Catalytic activity 

Notes

Acknowledgements

The authors thank MHRD, New Delhi for a research fellowship. We also thank DST-SERB (Research project Grant No. EMR/2014/000629), New Delhi for partial funding.

References

  1. 1.
    A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97(6), 2373–2420 (1997).  https://doi.org/10.1021/cr960406n CrossRefPubMedGoogle Scholar
  2. 2.
    M.E. Davis, Ordered porous materials for emerging applications. Nature 417(6891), 813–821 (2002).  https://doi.org/10.1038/nature00785 CrossRefPubMedGoogle Scholar
  3. 3.
    T.-W. Kim, F. Kleitz, B. Paul, R. Ryoo, MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer–butanol–water system. J. Am. Chem. Soc. 127(20), 7601–7610 (2005).  https://doi.org/10.1021/ja042601m CrossRefPubMedGoogle Scholar
  4. 4.
    J. Chen, J. Zhang, D. Zhu, T. Li, Novel polymer-supported phosphine palladium catalyst: one-pot synthesis from and application in Suzuki–Miyaura coupling reaction. J. Porous Mater. 24(4), 847–853 (2016).  https://doi.org/10.1007/s10934-016-0324-7 CrossRefGoogle Scholar
  5. 5.
    T. Tsoncheva, L. Ivanova, J. Rosenholm, M. Linden, Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Appl. Catal. B 89(3–4), 365–374 (2009).  https://doi.org/10.1016/j.apcatb.2008.12.015 CrossRefGoogle Scholar
  6. 6.
    F. Zhang, Y. Zheng, Y. Cao, C. Chen, Y. Zhan, X. Lin, J. Zhu, Ordered mesoporous Ag–TiO2–KIT-6 heterostructure: synthesis, characterization and photocatalysis. J. Mater. Chem. 19(18), 2771 (2009).  https://doi.org/10.1039/b818495j CrossRefGoogle Scholar
  7. 7.
    X. Liu, X. Zhao, M. Lu, Novel polymer supported iminopyridylphosphine palladium (II) complexes: an efficient catalyst for Suzuki-Miyaura and Heck cross-coupling reactions. J. Organomet. Chem. 768, 23–27 (2014).  https://doi.org/10.1016/j.jorganchem.2014.06.019 CrossRefGoogle Scholar
  8. 8.
    A. Modak, J. Mondal, V.K. Aswal, A. Bhaumik, A new periodic mesoporous organosilica containing diimine-phloroglucinol, Pd(II)-grafting and its excellent catalytic activity and trans-selectivity in C–C coupling reactions. J. Mater. Chem. 20(37), 8099 (2010).  https://doi.org/10.1039/c0jm01180k CrossRefGoogle Scholar
  9. 9.
    J. Rathod, P. Sharma, P. Pandey, A.P. Singh, P. Kumar, Highly active recyclable SBA-15-EDTA-Pd catalyst for Mizoroki-Heck, Stille and Kumada C–C coupling reactions. J. Porous Mater. 24(4), 837–846 (2016).  https://doi.org/10.1007/s10934-016-0323-8 CrossRefGoogle Scholar
  10. 10.
    K. Dhara, K. Sarkar, D. Srimani, S.K. Saha, P. Chattopadhyay, A. Bhaumik, A new functionalized mesoporous matrix supported Pd(II)-Schiff base complex: an efficient catalyst for the Suzuki–Miyaura coupling reaction. Dalton Trans. 39(28), 6395 (2010).  https://doi.org/10.1039/c003142a CrossRefPubMedGoogle Scholar
  11. 11.
    A. Pathak, A.P. Singh, Synthesis and characterization of D-2PA-Pd(II)@SBA-15 catalyst via “click chemistry”: highly active catalyst for Suzuki coupling reactions. J. Porous Mater. 24(2), 327–340 (2016).  https://doi.org/10.1007/s10934-016-0266-0 CrossRefGoogle Scholar
  12. 12.
    N. Suzuki, S. Kiba, Y. Yamauchi, Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Mater. Lett. 65(3), 544–547 (2011).  https://doi.org/10.1016/j.matlet.2010.10.027 CrossRefGoogle Scholar
  13. 13.
    Q. Liu, J. Li, Z. Zhao, M. Gao, L. Kong, J. Liu, Y. Wei, Synthesis, characterization, and catalytic performances of potassium-modified molybdenum-incorporated KIT-6 mesoporous silica catalysts for the selective oxidation of propane to acrolein. J. Catal. 344, 38–52 (2016).  https://doi.org/10.1016/j.jcat.2016.08.014 CrossRefGoogle Scholar
  14. 14.
    A. Gniewek, J. Ziolkowski, A. Trzeciak, M. Zawadzki, H. Grabowska, J. Wrzyszcz, Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki–Miyaura reaction. J. Catal. 254(1), 121–130 (2008).  https://doi.org/10.1016/j.jcat.2007.12.004 CrossRefGoogle Scholar
  15. 15.
    V.V. Namboodiri, R.S. Varma, Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chem. 3(3), 146–148 (2001).  https://doi.org/10.1039/b102337n CrossRefGoogle Scholar
  16. 16.
    W. Chang, G. Chae, S.R. Jang, J. Shin, B.J. Ahn, An efficient microwave-assisted Suzuki reaction using Pd/MCM-41 and Pd/SBA-15 as catalysts in solvent-free condition. J. Ind. Eng. Chem. 18(2), 581–585 (2012).  https://doi.org/10.1016/j.jiec.2011.11.043 CrossRefGoogle Scholar
  17. 17.
    W. Chang, J. Shin, G. Chae, S.R. Jang, B.J. Ahn, Microwave-assisted Sonogashira cross-coupling reaction catalyzed by Pd-MCM-41 under solvent-free conditions. J. Ind. Eng. Chem. 19(3), 739–743 (2013).  https://doi.org/10.1016/j.jiec.2012.11.002 CrossRefGoogle Scholar
  18. 18.
    S. Liu, J. Xiao, Toward green catalytic synthesis—Transition metal-catalyzed reactions in non-conventional media. J. Mol. Catal. A: Chem. 270(1–2), 1–43 (2007).  https://doi.org/10.1016/j.molcata.2007.01.003 CrossRefGoogle Scholar
  19. 19.
    P. Das, D. Sharma, A.K. Shil, A. Kumari, Solid-supported palladium nano and microparticles: an efficient heterogeneous catalyst for ligand-free Suzuki–Miyaura cross coupling reaction. Tetrahedron Lett. 52(11), 1176–1178 (2011).  https://doi.org/10.1016/j.tetlet.2011.01.009 CrossRefGoogle Scholar
  20. 20.
    M. Bernechea, E. de Jesús, C. López-Mardomingo, P. Terreros, Dendrimer-Encapsulated Pd Nanoparticles versus palladium acetate as catalytic precursors in the stille reaction in water. Inorg. Chem. 48(10), 4491–4496 (2009).  https://doi.org/10.1021/ic9002753 CrossRefPubMedGoogle Scholar
  21. 21.
    V. Polshettiwar, C. Len, A. Fihri, Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev. 253(21–22), 2599–2626 (2009).  https://doi.org/10.1016/j.ccr.2009.06.001 CrossRefGoogle Scholar
  22. 22.
    N. Noori, M. Nikoorazm, A. Ghorbani-Choghamarani, Pd(0)-S-methylisothiourea grafted onto mesoporous MCM-41 and its application as heterogeneous and reusable nanocatalyst for the Suzuki, Stille and Heck cross-coupling reactions. J. Porous Mater. 23(6), 1467–1481 (2016).  https://doi.org/10.1007/s10934-016-0207-y CrossRefGoogle Scholar
  23. 23.
    T. Tamoradi, M. Ghadermazi, A. Ghorbani-Choghamarani, SBA-15@adenine–Pd: a novel and green heterogeneous nanocatalyst in Suzuki and Stille reactions and synthesis of sulfides. J. Porous Mater. 26(1), 121–131 (2018).  https://doi.org/10.1007/s10934-018-0623-2 CrossRefGoogle Scholar
  24. 24.
    R. Narayanan, M.A. El-Sayed, Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 125(27), 8340–8347 (2003).  https://doi.org/10.1021/ja035044x CrossRefPubMedGoogle Scholar
  25. 25.
    S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58(48), 9633–9695 (2002).  https://doi.org/10.1016/s0040-4020(02)01188-2 CrossRefGoogle Scholar
  26. 26.
    H. Filian, A. Ghorbani-Choghamarani, E. Tahanpesar, Pd(0)-guanidine@MCM-41 as efficient and reusable heterogeneous catalyst for C–C coupling reactions. J. Porous Mater. (2018).  https://doi.org/10.1007/s10934-018-0698-9 CrossRefGoogle Scholar
  27. 27.
    K. Song, P. Liu, J. Wang, B. Tan, T. Li, Highly active palladium nanoparticles immobilized on knitting microporous organic polymers as efficient catalysts for Suzuki–Miyaura cross-coupling reaction. J. Porous Mater. 23(3), 725–731 (2016).  https://doi.org/10.1007/s10934-016-0127-x CrossRefGoogle Scholar
  28. 28.
    A. Loupy, L. Perreux, M. Liagre, K. Burle, M. Moneuse, Reactivity and selectivity under microwaves in organic chemistry. Relation with medium effects and reaction mechanisms. Pure Appl. Chem. 73(1), 161 (2001).  https://doi.org/10.1351/pac200173010161 CrossRefGoogle Scholar
  29. 29.
    N.J.S. Costa, P.K. Kiyohara, A.L. Monteiro, Y. Coppel, K. Philippot, L.M. Rossi, A single-step procedure for the preparation of palladium nanoparticles and phosphine-functionalized support as a catalyst for Suzuki cross-coupling reactions. J. Catal. 276(2), 382–389 (2010).  https://doi.org/10.1016/j.jcat.2010.09.028 CrossRefGoogle Scholar
  30. 30.
    S. Suresh, I.A.K. Reddy, N. Venkatathri, Synthesis of SAPO-16 molecular sieve in the non-aqueous medium by microwave method using Hexamethyleneimine as a template. Microporous Mesoporous Mater. 263, 275–281 (2018).  https://doi.org/10.1016/j.micromeso.2017.12.008 CrossRefGoogle Scholar
  31. 31.
    X. Zhang, P. Zhang, H. Yu, Z. Ma, S. Zhou, Mesoporous KIT-6 supported Pd–M x O y (M=Ni Co, Fe) catalysts with enhanced selectivity for p-chloronitrobenzene hydrogenation. Catal. Lett. 145(3), 784–793 (2015).  https://doi.org/10.1007/s10562-015-1480-0 CrossRefGoogle Scholar
  32. 32.
    C. He, J. Li, X. Zhang, L. Yin, J. Chen, S. Gao, Highly active Pd-based catalysts with hierarchical pore structure for toluene oxidation: catalyst property and reaction determining factor. Chem. Eng. J. 180, 46–56 (2012).  https://doi.org/10.1016/j.cej.2011.10.099 CrossRefGoogle Scholar
  33. 33.
    M. Hussain, F.A. Deorsola, N. Russo, D. Fino, R. Pirone, Abatement of CH4 emitted by CNG vehicles using Pd-SBA-15 and Pd-KIT-6 catalysts. Fuel 149, 2–7 (2015).  https://doi.org/10.1016/j.fuel.2014.12.024 CrossRefGoogle Scholar
  34. 34.
    A.R. Siamaki, A.E.R.S. Khder, V. Abdelsayed, M.S. El-Shall, B.F. Gupton, Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. J. Catal. 279(1), 1–11 (2011).  https://doi.org/10.1016/j.jcat.2010.12.003 CrossRefGoogle Scholar
  35. 35.
    R.J. Kalbasi, N. Mosaddegh, Palladium nanoparticles supported on Poly(2-hydroxyethyl methacrylate)/KIT-6 composite as an efficient and reusable catalyst for Suzuki-Miyaura reaction in water. J. Inorg. Organomet. Polym Mater. 22(2), 404–414 (2011).  https://doi.org/10.1007/s10904-011-9569-4 CrossRefGoogle Scholar
  36. 36.
    K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, G.M. Dhar, 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal. B 90(1–2), 55–63 (2009).  https://doi.org/10.1016/j.apcatb.2009.02.010 CrossRefGoogle Scholar
  37. 37.
    J. Sun, Q. Kan, Z. Li, G. Yu, H. Liu, X. Yang, J. Guan, Different transition metal (Fe2+, Co2+, Ni2+, Cu2+or VO2+) Schiff complexes immobilized onto three-dimensional mesoporous silica KIT-6 for the epoxidation of styrene. RSC Adv. 4(5), 2310–2317 (2014).  https://doi.org/10.1039/c3ra45599h CrossRefGoogle Scholar
  38. 38.
    X. Wang, Y. Tseng, J. Chan, S. Cheng, Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis. J. Catal. 233(2), 266–275 (2005).  https://doi.org/10.1016/j.jcat.2005.04.007 CrossRefGoogle Scholar
  39. 39.
    A. Rajini, A.K. Adepu, S. Chirra, N. Venkatathri, Porous palladium aminophosphates: synthesis, characterization, antimicrobial and cytotoxicity studies. RSC Adv. 5(82), 66956–66964 (2015).  https://doi.org/10.1039/c5ra11923e CrossRefGoogle Scholar
  40. 40.
    P.O. Thevenin, E. Pocoroba, L.J. Pettersson, H. Karhu, I.J. Väyrynen, S.G. Järås, Characterization and activity of supported palladium combustion catalysts. J. Catal. 207(1), 139–149 (2002).  https://doi.org/10.1006/jcat.2002.3515 CrossRefGoogle Scholar
  41. 41.
    L. Guo, J. Bai, C. Li, H. Liang, W. Sun, Q. Meng, T. Xu, Fabrication of palladium nanoparticles-loaded carbon nanofibers catalyst for the Heck reaction. New J. Chem. 37(12), 4037 (2013).  https://doi.org/10.1039/c3nj00609c CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of Technology WarangalWarangalIndia

Personalised recommendations