Advertisement

Journal of Porous Materials

, Volume 26, Issue 6, pp 1593–1606 | Cite as

Nickel catalysts supported on La2O3-modified KIT-6 for the methane dry reforming reaction

  • Di Hu
  • Jie Shan
  • Lin LiEmail author
  • Yu-Hua Zhang
  • Jin-Lin Li
Article
  • 86 Downloads

Abstract

Nickel catalysts are vulnerable to suffering from carbon deposition and metal sintering in the methane dry reforming process under high temperature. Based on these problems, in this paper, La2O3–KIT-6 materials with different La2O3 contents were designed and prepared in order to take advantage of the basic sites of La2O3 and rich mesoporous structure of KIT-6, and then nickel catalysts supported on La2O3–KIT-6 materials were synthesized. In contrast, the Ni/KIT-6 catalyst was also prepared by the same method. XRD, TEM, SEM, physisorption of N2, XPS, H2-TPR, Raman, and TG were used for fresh and spent catalysts characterization in this work. The catalytic performance of these Ni/La2O3–KIT-6 catalysts was tested under high temperature methane dry reforming reaction. Our work showed that the La2O3-modified catalysts showed reasonably superior catalytic activity and high long term stability compared with the nickel catalyst supported on KIT-6 without modification of La2O3. The high dispersion of nickel nanoparticles on La2O3–KIT-6 as well as the basic property of La2O3 were both helpful to the resistance towards carbon deposition, and the interaction between Ni nanoparticles and support material in Ni/La2O3–KIT-6 was helpful to the resistance towards nickel sintering on account of the special physicochemical properties of La2O3.

Keywords

Methane dry reforming reaction Nickel catalysts La2O3 Catalytic activity Catalytic stability 

Notes

Acknowledgement

Financial supports of this work by the National Natural Science Foundation of China (Grant No. 21403304) are greatly appreciated.

Compliance with ethical standards

Conflict of interest

The authors of this paper declare that they have no conflict of interest.

Ethical approval

The experiments of this paper comply with the current laws of China.

References

  1. 1.
    N. Wang, X. Yu, Y. Wang, W. Chu, M. Liu, Catal. Today 212, 98 (2013)Google Scholar
  2. 2.
    H. Zhang, Y. Dong, W. Fang, Y. Lian, Chin. J. Catal. 34, 330 (2013)Google Scholar
  3. 3.
    A.W. Budiman, S.H. Song, T.S. Chang, C.H. Shin, M.J. Choi, Catal. Surv. Asia 16, 183 (2012)Google Scholar
  4. 4.
    G.S. Gallego, F. Mondragón, J.M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, Catal. Today 200, 133–135 (2008)Google Scholar
  5. 5.
    L. Foppa, M.C. Silaghi, K. Larmier, A. Comas-Vives, J. Catal. 343, 196 (2016)Google Scholar
  6. 6.
    N. Pegios, V. Bliznuk, S.A. Theofanidis, V.V. Galvita, G.B. Marin, R. Palkovits, K. Simeonov, Appl. Surf. Sci. 452, 239 (2018)Google Scholar
  7. 7.
    L. Li, Z. Yang, D. Hu, J. Shan, Y.H. Zhang, J.L. Li, Catal. Lett. 148, 564 (2018)Google Scholar
  8. 8.
    J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, RSC Adv. 5, 22759 (2015)Google Scholar
  9. 9.
    L.A. Schulz, L.C.S. Kahle, K.H. Delgado, S.A. Schunk, A. Jentys, O. Deutschmann, J.A. Lercher, Appl. Catal. A 504, 599 (2015)Google Scholar
  10. 10.
    L. Zhang, Q. Zhang, Y. Liu, Y. Zhang, Appl. Surf. Sci. 389, 25 (2016)Google Scholar
  11. 11.
    C. Egawa, J. Catal. 358, 35 (2018)Google Scholar
  12. 12.
    L. Yue, J. Li, C. Chen, X. Fu, Y. Gong, X. Xia, J. Hou, C. Xiao, X. Chen, L. Zhao, G. Ran, H. Wang, Fuel 218, 335 (2018)Google Scholar
  13. 13.
    P.J.S. Prieto, A.P. Ferreira, P.S. Haddad, D. Zanchet, J.M.C. Bueno, J. Catal. 276, 351 (2010)Google Scholar
  14. 14.
    D. Pakhare, J. Spivey, Chem. Soc. Rev. 43, 7813 (2014)PubMedGoogle Scholar
  15. 15.
    C. Wang, N. Sun, N. Zhao, W. Wei, J. Zhang, T. Zhao, Y. Sun, C. Sun, H. Liu, C.E. Snape, ChemCatChem 6, 640 (2014)Google Scholar
  16. 16.
    J. Niu, X. Du, J. Ran, R. Wang, Appl. Surf. Sci. 376, 79 (2016)Google Scholar
  17. 17.
    N. Sun, X. Wen, F. Wang, W. Peng, N. Zhao, F. Xiao, W. Wei, Y. Sun, J. Kang, Appl. Surf. Sci. 257, 9169 (2011)Google Scholar
  18. 18.
    S. Dama, S.R. Ghodke, R. Bobade, H.R. Gurav, S. Chilukuri, Appl. Catal. B 224, 146 (2018)Google Scholar
  19. 19.
    C.J. Liu, J. Ye, J. Jiang, Y. Pan, ChemCatChem 3, 529 (2011)Google Scholar
  20. 20.
    Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, J. Catal. 250, 331 (2007)Google Scholar
  21. 21.
    Y. Yan, Y. Dai, Y. Yang, A.A. Lapkin, Appl. Catal. B 237, 504 (2018)Google Scholar
  22. 22.
    G. Jin, F. Gu, Q. Liu, X. Wang, L. Jia, G. Xu, Z. Zhong, F. Su, RSC Adv. 6, 9631 (2016)Google Scholar
  23. 23.
    E.C. Lovell, A. Fuller, J. Scott, R. Amal, Appl. Catal. B 199, 155 (2016)Google Scholar
  24. 24.
    J. Gao, C. Jia, M. Zhang, F. Gu, G. Xu, F. Su, Catal. Sci. Technol. 3, 2009 (2013)Google Scholar
  25. 25.
    J.W. Han, J.S. Park, M.S. Choi, H. Lee, Appl. Catal. B 203, 625 (2017)Google Scholar
  26. 26.
    R.K. Singha, A. Yadav, A. Shukla, M. Kumar, R. Bal, Catal. Commun. 92, 19 (2017)Google Scholar
  27. 27.
    F. Zhang, Z. Liu, S. Zhang, N. Akter, R.M. Palomino, D. Vovchok, I. Orozco, D. Salazar, J.A. Rodriguez, J. Llorca, J. Lee, D. Kim, W. Xu, A.I. Frenkel, Y. Li, T. Kim, S.D. Senanayake, ACS Catal. 8, 3550 (2018)Google Scholar
  28. 28.
    S. Tada, D. Minori, F. Otsuka, R. Kikuchi, K. Osada, K. Akiyama, S. Satokawa, Fuel 129, 219 (2014)Google Scholar
  29. 29.
    W.Y. Teoh, D.E. Doronkin, G.K. Beh, J.A.H. Dreyer, J.D. Grunwaldt, J. Catal. 326, 182 (2015)Google Scholar
  30. 30.
    Q. Duan, J. Wang, C. Ding, H. Ding, S. Guo, Y. Jia, P. Liu, K. Zhang, Fuel 193, 112 (2017)Google Scholar
  31. 31.
    S. Li, H. Tang, D. Gong, Z. Ma, Y. Liu, Catal. Today 297, 298 (2017)Google Scholar
  32. 32.
    N. Wang, Z. Xu, J. Deng, K. Shen, X. Yu, W. Qian, W. Chu, F. Wei, ChemCatChem 6, 1470 (2014)Google Scholar
  33. 33.
    L. Li, M. Huo, Y. Zhang, J. Li, J. Porous Mater. 24, 1613 (2017)Google Scholar
  34. 34.
    X. Chen, J. Jin, G. Sha, C. Li, B. Zhang, D. Su, C.T. Williams, C. Liang, Catal. Sci. Technol. 4, 53 (2014)Google Scholar
  35. 35.
    X. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J. Gong, Appl. Catal. B 202, 683 (2017)Google Scholar
  36. 36.
    M.M. Nair, S. Kaliaguine, F. Kleitz, ACS Catal. 4, 3837 (2014)Google Scholar
  37. 37.
    X. Verykios, Int. J. Hydrog. Energy 28, 1045 (2003)Google Scholar
  38. 38.
    H. Song, J. Yang, J. Zhao, L. Chou, Chin. J. Catal. 31, 21 (2010)Google Scholar
  39. 39.
    S.Q. Chen, Y.D. Li, Y. Liu, X. Bai, Int. J. Hydrog. Energy 36, 5849 (2011)Google Scholar
  40. 40.
    W.M. Mullins, Surf. Sci. 262, L144 (1992)Google Scholar
  41. 41.
    P. Li, F. Yu, N. Altaf, M. Zhu, J. Li, B. Dai, Q. Wang, Materials 11, 221 (2018)PubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Di Hu
    • 1
  • Jie Shan
    • 1
  • Lin Li
    • 1
    Email author
  • Yu-Hua Zhang
    • 1
  • Jin-Lin Li
    • 1
  1. 1.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanChina

Personalised recommendations