Advertisement

Porous NiCu alloy cathode with oriented pore structure for hydrogen evolution reaction by freeze casting

  • Jiahuan He
  • Liguo Zu
  • Xinli LiuEmail author
  • Lei Zhang
  • Bohua Duan
Article

Abstract

Porous NiCu alloy with oriented pore structure was successfully prepared by freeze casting method with Ni powders and Cu powders as the source materials, and water as the solvent. The pore structure of porous NiCu alloy was analyzed, finding that the porous NiCu alloy frozen at lower temperature having thinner wall thickness and narrower pore width. The electrocatalytic performance for hydrogen evolution reaction (HER) in 6 M KOH at room temperature was evaluated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy techniques. Results show that porous NiCu alloy frozen at − 50 °C exhibits the most excellent electrocatalytic activity for HER.

Keywords

Porous materials NiCu alloys Freeze casting Hydrogen evolution reaction 

Notes

Acknowledgement

This research was supported by the National Nature Science Foundation of China (Grant Nos. 51604305, 51674304, 51874368) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3677).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2019_751_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 53 kb)

References

  1. 1.
    J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004)CrossRefGoogle Scholar
  2. 2.
    C.R.P. Patel, P. Tripathi, A.K. Vishwakarma, M. Talat, P.K. Soni, T.P. Yadav, O.N. Srivastava, Enhanced hydrogen generation by water electrolysis employing carbon nano-structure composites. Int. J. Hydrogen Energy 43, 3180–3189 (2018)CrossRefGoogle Scholar
  3. 3.
    D.Z. Wang, T.Y. Liu, J.C. Wang, Z.Z. Wu, N, P (S) co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon 139, 845–852 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, X.P. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215–230 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Häussinger, R. Lohmüller, A.M. Watson, Hydrogen, 1. Properties and Occurrence, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2011)Google Scholar
  6. 6.
    J.R. Mckone, S.C. Marinescu, B.S. Brunschwig, J.R. Winkler, B.G. Harry, Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 3, 865–878 (2014)CrossRefGoogle Scholar
  7. 7.
    C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Cheminform 43, 6555–6569 (2014)Google Scholar
  8. 8.
    M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H.J. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research 9, 28–46 (2016)CrossRefGoogle Scholar
  9. 9.
    J.L. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113, 2139–2181 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Negem, H. Nady, Electroplated Ni-Cu nanocrystalline alloys and their electrocatalytic activity for hydrogen generation using alkaline solutions. Int. J. Hydrogen Energy 42, 28386–28396 (2017)CrossRefGoogle Scholar
  11. 11.
    X.L. Zhu, T.Q. Lei, Characteristics and formation of corrosion product films of 70Cu-30Ni alloy in seawater. Corros. Sci. 44, 67–69 (2002)CrossRefGoogle Scholar
  12. 12.
    V.B. Singh, A. Gupta, The electrochemical corrosion and passivation behavior of Monel (400) in concentrated acids and their mixtures. J. Mater. Sci.: Mater. Electron. 36, 1433–1442 (2001)CrossRefGoogle Scholar
  13. 13.
    X.J. Liu, Z. Huai, Y. Lu, C.P. Wang, Microstructure and mechanical behavior of Ni-Cu-Fe-Si porous alloys. Mater. Sci. Eng. A 545, 111–117 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Saranya, D. Velayutham, V. Suryanarayanan, Electrodeposition of Ni-Cu alloys from a protic ionic liquid medium-voltammetric and surface morphologic studies. J. Electroanal. Chem. 734, 70–78 (2014)CrossRefGoogle Scholar
  15. 15.
    L.P. Yu, Y. Jiang, Y.H. He, C.T. Liu, The corrosion behavior of sintering micro-porous Ni–Cu alloy in hydrofluoric acid solution. J. Alloys Compd. 638, 7–13 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Solmaz, A. Döner, G. Kardaş, The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution. Int. J. Hydrogen Energy 34, 2089–2094 (2009)CrossRefGoogle Scholar
  17. 17.
    J.L. Pinilla, I. Suelves, M.J. Lázaro, R. Molinerand, J.M. Palacios, Influence of nickel crystal domain size on the behaviour of Ni and NiCu catalysts for the methane decomposition reaction. Appl. Catal. A 363(2009), 199–207 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Sin, E. Kopnin, Y. Dubitsky, A. Zaopo, A.S. Aricò, D.L. Rosa, L.R. Gullo, V. Antonucci, Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs. J. Power Sources 164, 300–305 (2007)CrossRefGoogle Scholar
  19. 19.
    L.P. Yu, T. Lei, B. Nan, Y. Jiang, Y.H. He, C.T. Liu, Characteristics of a sintered porous Ni-Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy 97, 498–505 (2016)CrossRefGoogle Scholar
  20. 20.
    M.T. Dehaghani, M. Ahmadian, B.H. Ben, Fabrication and characterization of porous Co-Cr-Mo/58S bioglass nano-composite by using NH4HCO3 as space-holder. Mater. Des. 88, 406–413 (2015)CrossRefGoogle Scholar
  21. 21.
    J.B. Lee, M.K. Ahna, Y.H. Koh, H. Lee, H.E. Kim, Ti scaffolds with tailored porosities and mechanical properties using porous polymer templates. Mater. Des. 101, 323–331 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Hakamada, M. Mabuchi, Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 485, 583–587 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Deville, Freeze-casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 10, 155–169 (2010)CrossRefGoogle Scholar
  24. 24.
    L. Ren, Y.P. Zeng, D. Jiang, Preparation of porous TiO2 by a novel freeze casting. Ceram. Int. 35, 1267–1270 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.M. Zhang, L.Y. Hu, J.C. Han, Z.H. Jiang, Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceram. Int. 36, 617–621 (2010)CrossRefGoogle Scholar
  26. 26.
    Q. Fu, M.N. Rahaman, F. Dogan, B.S. Bai, Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B 86, 125–135 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, K. Zuo, Y.P. Zeng, Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceram. Int. 35, 2151–2154 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Liu, J. Yuan, C.A. Wang, A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. J. Eur. Ceram. Soc. 33, 3249–3256 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Deville, E. Saiz, A.P. Tomsia, Ice-templated porous alumina structures. Acta Mater. 55, 1965–1974 (2007)CrossRefGoogle Scholar
  30. 30.
    J.C. Han, C.Q. Hong, X.H. Zhang, J.C. Du, W. Zhang, Highly porous ZrO2, ceramics fabricated by a camphene-based freeze-casting route: microstructure and properties. J. Eur. Ceram. Soc. 30, 53–60 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, Influence of particle size on ice nucleation and growth during the ice-templating process. J. Am. Ceram. Soc. 93, 2507–2510 (2010)CrossRefGoogle Scholar
  32. 32.
    T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki, Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J. Am. Ceram. Soc. 84, 230–232 (2001)CrossRefGoogle Scholar
  33. 33.
    J.J. Liu, H. Watanabe, M. Fuji, M. Takahashi, Electrocatalytic evolution of hydrogen on porous alumina/gelcast-derived nano-carbon network composite electrode. Electrochem. Commun. 11, 107–110 (2009)CrossRefGoogle Scholar
  34. 34.
    N.F. Elisa, Z.W. Chong, O. Sasha, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A 226, 179–197 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Lasia, Hydrogen evolution/oxidation reactions on porous electrodes. J. Electroanal. Chem. 454, 115–121 (1998)CrossRefGoogle Scholar
  36. 36.
    B. Losiewicz, A. Budniok, E. Rowinski, E. Lagiewka, A. Lasia, The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modified nickel electrodes. Int. J. Hydrogen Energy 29, 145–157 (2004)CrossRefGoogle Scholar
  37. 37.
    B. Borresen, G. Hagen, R. Tunold, Hydrogen evolution on RuxTi1−xO2 in 0.5 M H2SO4. Electrochim. Acta 47, 1819–1827 (2002)CrossRefGoogle Scholar
  38. 38.
    M.Y. Gao, C. Yang, Q.B. Zhang, Y.W. Yu, Y.X. Hua, Y. Li, P. Dong, Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim. Acta 215, 609–616 (2016)CrossRefGoogle Scholar
  39. 39.
    X.D. He, F. Xu, F. Li, L. Liu, Y. Wang, N. Deng, Y.W. Zhu, J.B. He, Composition-performance relationship of NixCuy nanoalloys as hydrogen evolution electrocatalyst. J. Electroanal. Chem. 799, 235–241 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Oswald, W. Brückner, XPS depth profile analysis of non-stoichiometric NiO films. Surf. Interface Anal. 36, 17–22 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiahuan He
    • 1
  • Liguo Zu
    • 2
  • Xinli Liu
    • 1
    Email author
  • Lei Zhang
    • 2
  • Bohua Duan
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations