Advertisement

Encapsulation of Aspirin into parent and functionalized MCM-41, in vitro release as well as kinetics

  • Priyanka Solanki
  • Anjali PatelEmail author
Article
  • 43 Downloads

Abstract

Parent as well as functionalized MCM-41 (by 12-tungstophosphoric acid, TPA) was loaded with poorly soluble drug (Aspirin) and characterized by various physicochemical techniques such as TGA, FT-IR, BET surface area, XRD and TEM. In-vitro controlled release studies of Aspirin, in Simulated Body Fluid (pH 7.4) were carried out under stirring as well as static conditions. Similarly, release study was carried in simulated gastric fluid (pH 1.2), to see the effect of pH on release rate of drug. The influence of 12-tungstophosphoric acid on release rate of drug was also studied. Further, comparison of obtained release profile with marketed formulation (Ecosprin) was carried out. First order release kinetic, Higuchi model, Korsmeyer-Peppas Model and Extended Kinetic Model indicate that the functionalization by inorganic moiety, TPA plays an important role in release of Aspirin.

Keywords

MCM-41 12-Tungstophophoric acid Aspirin Ecosprin Kinetics and Mechanism 

Notes

Acknowledgements

PS is thankful to University Grant commission (UGC), New Delhi for the award of Senior Research Fellowship. We are also thankful to Department of Chemistry, The Maharaja Sayajirao University of Baroda, for nitrogen adsorption–desorption analysis.

Compliance with ethical standards

Conflict of interest

Author claim no conflict of interest.

Supplementary material

10934_2019_750_MOESM1_ESM.docx (680 kb)
Supplementary material 1 (DOCX 679 kb)

References

  1. 1.
    X.L. Tan, K.M. Reid Lombardo, W.R. Bamlet, A.L. Oberg, D.P. Robinson, K.E. Anderson, G.M. Petersen, Cancer Prev. Res. 4, 1835–1841 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Bardia, J.E. Olson, C.M. Vachon, D. Lazovich, R.A. Vierkant, A.H. Wang, P.J. Limburg, K.E. Anderson, J.R. Cerhan, Breast Cancer Res. Treat. 126, 149–155 (2011)CrossRefGoogle Scholar
  3. 3.
    E.A. Coleman, Evid. Based Nurs. 14, 71 (2011)CrossRefGoogle Scholar
  4. 4.
    M.D. Holmes, W.Y. Chen, L. Li, E. Hertzmark, D. Spiegelman, S.E. Hankinson, J. Clin. Oncol. 28, 1467–1472 (2010)CrossRefGoogle Scholar
  5. 5.
    J.C. Wilson, L.A. Anderson, L.J. Murray, C.M. Hughes, Cancer Causes Control 22, 803–810 (2011)CrossRefGoogle Scholar
  6. 6.
    P.M. Ridker, N.R. Cook, I.-M. Lee, D. Gordon, J.M. Gaziano, J.E. Manson, C.H. Hennekens, J.E. Buring, E.N. Engl, J. Med. 352, 1293–1304 (2005)Google Scholar
  7. 7.
    F. Catella-Lawson, M.P. Reilly, S.C. Kapoor, A.J. Cucchiara, S. DeMarco, B. Tournier, S.N. Vyas, G.A.N. Fitz Gerald, Engl. J. Med. 345, 1809–1817 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Manzanoa, V. Aina, C.O. Arean, F. Balas, V. Cauda, M. Colilla, M.R. Delgado, M. Vallet-Regi, Chem. Eng. J. 137, 30–37 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Szegedi, M. Popova, I. Goshev, S. Klebert, J. Mihaly, J. Solid State Chem. 194, 257–263 (2012)CrossRefGoogle Scholar
  10. 10.
    N.I. Cuello, V.R. Elías, S.N. Mendieta, M. Longhi, M.E. Crivello, M.I. Oliva, G.A. Eimer, Mater. Sci. Eng. C 78, 674–681 (2017)CrossRefGoogle Scholar
  11. 11.
    W. Zeng, X.-F. Qian, Y.-B. Zhang, J. Yin, Z.-K. Zhu, Mater. Res. Bull. 40, 766–772 (2005)CrossRefGoogle Scholar
  12. 12.
    G. Lin, J. Sun, Y. Li, J. Solid State Chem. 184, 1909–1914 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Datt, E.-M. Izz, S.C. Larsen, J. Phys. Chem. C 116, 18358–18366 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Datt, D. Fields, S.C. Larsen, J. Phys. Chem. C 116, 21382–21390 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Lin, J. Sun, R. Bo, Y. Li, H. Zhang, Mater. Rese. Bull. 46, 1540–1545 (2011)CrossRefGoogle Scholar
  16. 16.
    H.-Y. Zhou, L.-J. Jiang, Y.-P. Zhang, J.-B. Li, Front Mater. Sci. 6(3), 259–267 (2012)CrossRefGoogle Scholar
  17. 17.
    E. Vyskocilov, I. Lusticka, I. Paterova, L. Machova, L. Cervený, Solid State Sci. 38, 85–89 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Singco, L.-H. Liu, Y.-T. Chen, Y.-H. Shih, H.-Y. Huang, C.-H. Lin, Microporous Mesoporous Mater. 223, 254–260 (2016)CrossRefGoogle Scholar
  19. 19.
    J.T. Rhule, C.L. Hill, D.A. Judd, Chem. Rev. 98, 327–358 (1998)CrossRefGoogle Scholar
  20. 20.
    D.E. Katsoulis, Chem. Rev. 98, 359–388 (1998)CrossRefGoogle Scholar
  21. 21.
    Y. Toshihiro, J. Mater. Chem. 15, 4773–4782 (2005)CrossRefGoogle Scholar
  22. 22.
    F. Andreas, S. Thilo, G.G. Markus, R.P. Greta, Bioorg. Med. Chem. Lett. 1(21), 1162–1166 (2001)Google Scholar
  23. 23.
    H.-K. Yang, Y.-X. Cheng, M.-M. Su, Y. Xiao, M.-B. Hu, W. Wanga, Q. Wang, Bioorg. Med. Chem. Lett. 23, 1462–1466 (2013)CrossRefGoogle Scholar
  24. 24.
    G. Nan, S. Hanjun, K. Dong, R. Jinsong, D. Taicheng, C. Xu, X. Qu, Nat. Commun. (2014).  https://doi.org/10.1038/ncomms4422 Google Scholar
  25. 25.
    J. Wang, Y. Liu, K. Xu, Y. Qi, J. Zhong, K. Zhang, J. Li, E. Wang, Z. Wu, K. Zhenhui, A.C.S. Appl, Mater. Interfaces. 6, 9785–9789 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Shan, B. Shengtai, H. Ruichao, K. Chen, Z. Huang, Z. Jiangwei, H. Jian, W. Yongge, Sci. Rep. (2016).  https://doi.org/10.1038/srep33529 Google Scholar
  27. 27.
    K. Davud, B. Yadollahi, V. Mirkhani, Microporous Mesoporous Mater. 247, 23–30 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Aleksandar, A. Manuel, R. Annette, Chem. Commun. 54, 1153–1169 (2018)CrossRefGoogle Scholar
  29. 29.
    C.L. Hill, J.M.S. Weeks, R.F. Schinazi, J. Med. Chem. 33, 2767–2772 (1990)CrossRefGoogle Scholar
  30. 30.
    M.S. Weeks, C.L. Hill, R.F. Schinazi, J. Med. Chem. 35, 1216–1221 (1992)CrossRefGoogle Scholar
  31. 31.
    D.A. Judd, J.H. Nettles, N. Nevins, J.P. Snyder, D.C. Liotta, J. Tang, J. Ermolieff, R.F. Schinazi, C.L. Hill, J. Am. Chem. Soc. 123, 886–897 (2001)CrossRefGoogle Scholar
  32. 32.
    L. Xia, S. Wang, C. Feng, J. Rare Earths 236, 965–968 (2010)Google Scholar
  33. 33.
    K. Nomiya, H. Torii, T. Hasegawa, Y. Nemoto, K. Nomura, K. Hashino, M. Uchida, Y. Kato, K. Shimizu, M. Oda, J. Inorg. Biochem. 86, 657–667 (2001)CrossRefGoogle Scholar
  34. 34.
    C. Feng, G. Qiang, L. Xia, H. Hongyou, J. Rare Earths 30(5), 467–472 (2012)CrossRefGoogle Scholar
  35. 35.
    L. Xia, G. Qiang, F. Changgen, J. Rare Earths 30, 604–608 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Feng, G. Changgen, Q. Liu, X. He, Chin. J. Chem. 30, 1589–1593 (2012)CrossRefGoogle Scholar
  37. 37.
    X. Liu, Q. Gan, C. Feng, Inorgan. Chim. Acta (2015).  https://doi.org/10.1016/j.ica.2015.11.034 Google Scholar
  38. 38.
    A. Patel, P. Solanki, J. Porous. Mater. 23, 1113–1123 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Pathan, P. Solanki, A. Patel, Microporous Mesoporous Mater. 258, 114–121 (2018)CrossRefGoogle Scholar
  40. 40.
    S. Pathan, P. Solanki, A. Patel, J. Porous. Mater. 24, 1105–1115 (2017). (Surfactant (CTAB, 4.38 g) and NaOH (1.2 g) were dissolved in 200 mL double distilled water. When the solution became homogeneous, TEOS (20.8 g) was added quickly with stirring. After 5 min, mesitylene (8.64 g) and hexane (3.1 g) was added to the stirred mixture. The resulting thick mixture was stirred vigorously for 10 min and then heated at 85 °C for 2 days with stirring. The resulting product was filtered, washed with double distilled water, dried at 100 °C temperature. The obtained material was calcined at 550 °C in air for 5 h and designated as MCM-41.)Google Scholar
  41. 41.
    G.D. Yadav, V.V. Bokade, Appl. Catal. A 147, 299–323 (1996)CrossRefGoogle Scholar
  42. 42.
    Y.A. Ribeiro, A.C.F. Cairesb, N. Boralleb, M. Ionashirob, Thermochim. Acta 279, 177–181 (1996)CrossRefGoogle Scholar
  43. 43.
    V. Renganayaki, S. Srinivasan, S. Suriya, Int. J. Chem. Technol. Res. 4(3), 983–990 (2012)Google Scholar
  44. 44.
    I.G. Binev, B.A. Stamboliyska, Y.I. Binev, J. Mol. Struct. 378, 189–197 (1996)Google Scholar
  45. 45.
    A. Szegedi, M. Popova, I. Goshev, S. Klebert, J. Mihaly, J. Solid State Chem. 194, 257–263 (2012)CrossRefGoogle Scholar
  46. 46.
    B. Marler, U. Oberhagemann, S. Vortmann, H. Gies, Microporous Mater. 6, 375–383 (1996)CrossRefGoogle Scholar
  47. 47.
    T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41, 113–252 (1996)Google Scholar
  48. 48.
    P. Costa, J.M. Sousa Lobo, Eur. J. Pharm. Sci. 13, 123–133 (2001)CrossRefGoogle Scholar
  49. 49.
    G. Singhvi, M. Singh, Int. J. Pharm. Stud. Res. 2(1), 77–84 (2011)Google Scholar
  50. 50.
    C. Salome, O. Godswill, O. Ikechukwu, Res. J. Pharm. Biol. Chem. Sci. 4(2), 97–103 (2013)Google Scholar
  51. 51.
    G. Maria, A.L. Stoica, I. Luta, D. Stirbet, G.L. Radu, Microporous Mesoporous Mater. 162(11), 80–90 (2012)CrossRefGoogle Scholar
  52. 52.
    G. Maria, I. Luta, Chem. Pap. 65(4), 542–552 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations