Porosity tuned NiO nanocrystallites by solution combustion synthesis for the development of a voltammetric sensor for dopamine

  • Thooneri Shimna
  • Jasmine Thomas
  • Teena Joseph
  • Tony Thomas
  • Nygil ThomasEmail author


Nickel oxide (NiO) nanocrystallites of porous structure were synthesised by solution combustion method. The influence of F/O ratio on the structural, morphological and electrochemical parameters was investigated. The sample synthesized at F/O ratio 0.4 had a crystallite size of 5 nm. This sample possesses greater surface area and high porosity whereas the sample synthesized at F/O 0.2 was not porous and had lower surface area. Porous NiO was used to modify the carbon paste electrode for the selective detection of dopamine (DA) in the presence of a lot of excess ascorbic acid and uric acid. Sodium dodecyl sulphate (SDS) casting onto the NiO modified electrode improves the performance towards DA. NiO/SDS/MCPE electrode is completely insensitive to ascorbic acid signals below 1.0 × 10−3 M and enables the accurate quantification of DA in presence of 1000 fold excess of UA (uric acid). The fabricated electrode shows good reproducibility, stability and linear dynamic range of 0.3–300 µM.


NiO F/O ratio Dopamine Combustion SDS Carbon paste electrode 



The authors are thankful for the financial support given by UGC in the form of a minor project to Dr. Nygil Thomas, Department of Chemistry, Nirmalagiri College. Shimna T gratefully acknowledges the support from CSIR as JRF. This work has also been supported by UGC-Innovative programme and DST-FIST programs of Nirmalagiri College, Nirmalagiri. The authors are also thankful for the SEM Characterisation facilities provided by Balram Sahoo’s Group at IISc, Bangalore. We also appreciate the fruitful discussion we had with Dr. Jobin Cyriac regarding the BET analysis and Dr Sudheesh VD regarding the PXRD analysis.

Supplementary material

10934_2019_743_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1103 KB)


  1. 1.
    K.M. Dooley, S.Y. Chen, J.R.H. Ross, J. Catal. 145, 402 (1994)CrossRefGoogle Scholar
  2. 2.
    T. Hyeon, Chem. Commun. 3, 927 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Sun, Adv. Mater. 18, 393 (2006)CrossRefGoogle Scholar
  4. 4.
    Y.W. Jun, J.H. Lee, J. Cheon, Angew. Chemie Int. Ed. 47, 5122 (2008)CrossRefGoogle Scholar
  5. 5.
    S.T. Aruna, A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 44 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Li, J. Ran, M. Jaroniec, S.Z. Qiao, Nanoscale 7, 17590 (2015)CrossRefGoogle Scholar
  7. 7.
    K.C. Patil, S.T. Aruna, T. Mimani, Curr. Opin. Solid State Mater. Sci. 6, 507 (2002)CrossRefGoogle Scholar
  8. 8.
    N. Thomas, T. Shimna, P.V. Jithin, V.D. Sudheesh, H.K. Choudhary, B. Sahoo, S.S. Nair, N. Lakshmi, V. Sebastian, J. Magn. Magn. Mater. 462, 136 (2018)CrossRefGoogle Scholar
  9. 9.
    V.D. Sudheesh, N. Thomas, N. Roona, P.K. Baghya, V. Sebastian, Ceram. Int. 43, 15002 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Chen, S. Chatterjee, Chem. Soc. Rev. 42, 5425 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Pradhan, H.S. Jung, J.H. Jang, T.W. Kim, C. Kang, J.S. Kim, Chem. Soc. Rev. 43, 4684 (2014)CrossRefGoogle Scholar
  12. 12.
    J.M. Zen, P.J. Chen, Anal. Chem. 69, 5087 (1997)CrossRefGoogle Scholar
  13. 13.
    G. Lunardi, S. Galati, D. Tropepi, V. Moschella, L. Brusa, M. Pierantozzi, A. Stefani, S. Rossi, F. Fornai, E. Fedele, P. Stanzione, A.H. Hainsworth, A. Pisani, Park. Relat. Disord. 15, 383 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Wightman, L.J. May, A.C. Michael, Anal. Chem. 60, 769 (1988)CrossRefGoogle Scholar
  15. 15.
    M. Velasco, A. Luchsinger, Am J Ther 5, 37 (1998)CrossRefGoogle Scholar
  16. 16.
    A. Sawa, Science 296(80), 692 (2002)CrossRefGoogle Scholar
  17. 17.
    C.A. Heidbreder, L. Lacroix, A.R. Atkins, A.J. Organ, S. Murray, A. West, A.J. Shah, J. Neurosci. Methods 112, 135 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Mamiński, M. Olejniczak, M. Chudy, A. Dybko, Z. Brzózka, Anal. Chim. Acta 540, 153 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Liu, L. Yuan, X. Dong, Int. J. Chem. Sci. Res 3, 39 (2015)Google Scholar
  20. 20.
    Y. Xiao, C. Guo, C.M. Li, Y. Li, J. Zhang, R. Xue, S. Zhang, Anal. Biochem. 371, 229 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao, Q. Wang, Sensors Actuators B Chem. 186, 380 (2013)CrossRefGoogle Scholar
  22. 22.
    R.N. Goyal, S. Bishnoi, Talanta 84, 78 (2011)CrossRefGoogle Scholar
  23. 23.
    J.Z. Ivan Švancara, K. Vytřas, J. Barek, Crit. Rev. Anal. Chem. 31, 311 (2001)CrossRefGoogle Scholar
  24. 24.
    I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, J. Wang, Electroanalysis 21, 7 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Gorton, Electroanalysis 7, 23 (1995)CrossRefGoogle Scholar
  26. 26.
    K. Kalcher, J.-M. Kauffmann, J. Wang, I. Švancara, K. Vytřas, C. Neuhold, Z. Yang, Electroanalysis 7, 5 (2018)CrossRefGoogle Scholar
  27. 27.
    M.S. Alaejos, F.J.G. Montelongo, Chem. Rev. 104, 3239 (2004)CrossRefGoogle Scholar
  28. 28.
    M.M. Rahman, N.S. Lopa, K. Kim, J.-J. Lee, J. Electroanal. Chem. 754, 87 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Xu, J. Zhu, H. Wang, H. Chen, Anal. Lett. 36, 2723 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Tian, Y. Gao, L. Li, W. Wu, D. Sun, J. Lu, T. Li, Microchim. Acta 180, 607 (2013)CrossRefGoogle Scholar
  31. 31.
    K. Ghanbari, N.T. Hajheidari, Anal. Biochem. 473, 53 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Reddy, B.E. Kumara Swamy, H. Jayadevappa, Int. J. Sci. Res. 01, 96 (2012)Google Scholar
  33. 33.
    S. Reddy, B.E. Kumara Swamy, B.N. Chandrashekar, S. Chitravathi, H. Jayadevappa, Anal. Bioanal. Electrochem. Anal. Bioanal. Electrochem 4, 186 (2012)Google Scholar
  34. 34.
    X. Zhang, Y.C. Zhang, L.X. Ma, Sensors Actuators B Chem. 227, 488 (2016)CrossRefGoogle Scholar
  35. 35.
    T.V. Sathisha, B.E.K. Swamy, S. Reddy, B.N. Chandrashekar, B. Eswarappa, J. Mol. Liq. 172, 53 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Thomas, R.J. Mascarenhas, O.J. D’Souza, S. Detriche, Z. Mekhalif, P. Martis, Talanta 125, 352 (2014)CrossRefGoogle Scholar
  37. 37.
    I. Svancara, P. Foret, K. Vytras, Talanta 64, 844 (2004)CrossRefGoogle Scholar
  38. 38.
    E. Niranjana, B.E. Kumara Swamy, R. Raghavendra Naik, B.S. Sherigara, H. Jayadevappa, J. Electroanal. Chem. 631, 1 (2009)CrossRefGoogle Scholar
  39. 39.
    Y. Mu, D. Jia, Y. He, Y. Miao, H. Wu, Biosens. Bioelectron. 26, 2948 (2011)CrossRefGoogle Scholar
  40. 40.
    W. Xing, F. Li, Z. Yan, G.Q. Lu, J. Power Sources 134, 324 (2004)CrossRefGoogle Scholar
  41. 41.
    A. Kumar, E.E. Wolf, A.S. Mukasyan, AIChE J. 57, 2207 (2011)CrossRefGoogle Scholar
  42. 42.
    K.V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A.S. Rogachev, E.E. Wolf, A.S. Mukasyan, ​J. Phys. Chem. C 117, 24417 (2013)CrossRefGoogle Scholar
  43. 43.
    K. Desphande, M. Neresesyan, A. Mukasyan, Ind. Eng. Chem. Res. 44, 6196 (2005)CrossRefGoogle Scholar
  44. 44.
    K.G. Chandrappa, T.V. Venkatesha, K.O. Nayana, M.K. Punithkumar, Mater. Corros. 63, 445 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  46. 46.
    S.G.E. Roberto Köferstein, L. Jäger, Solid State Ion. 249250, 1 (2013)CrossRefGoogle Scholar
  47. 47.
    M.M. Ardakani, M.A.S. Mohseni, H. Beitollahi, A. Benvidi, H. Naeimi, Turk. J. Chem. 35, 573 (2011)Google Scholar
  48. 48.
    V. Fragkou, Y. Ge, G. Steiner, D. Freeman, N. Bartetzko, A.P.F. Turner, Int. J. Electrochem. Sci. 7, 6214 (2012)Google Scholar
  49. 49.
    M. Kumar, B.E.K. Swamy, Mater. Sci. Eng. C 58, 142 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNirmalagiri CollegeKannurIndia
  2. 2.Department of ChemistryS. N CollegeKannurIndia
  3. 3.Department of ChemistryDeva Matha CollegeKottayamIndia

Personalised recommendations