Amine-impregnated carbon aerogels with ultra-high pore volume synthesized by pH adjusting for efficient CO2 Capture

  • Liang Chen
  • Yan Cheng
  • Yongjun LiuEmail author
  • Deming Luo


Carbon aerogels with ultra-high pore volume and meso/macro pores were successfully synthesized by using silica hard templating combined sol–gel method by controlling the pH value of the initial reaction solution. High loadings (65–80 wt%) of TEPA (tetraethylenepentamine) and PEI (polyethyleneimine) were impregnated into CA with a high pore volume of 5.7 cm3/g for CO2 adsorption, respectively. The effects of amine loading, CO2 concentration, adsorption temperature, and moisture on the CO2 adsorption performance of the amine-loaded CA sorbents were comparatively investigated. The results showed that the CA with ultra-high pore volume enabled excellent CO2 adsorption capacity and fast kinetics (5.93 mmol/g and 4.70 mmol/g within 2.5 min for the case of TEPA and PEI respectively at 75 °C under 10% dry CO2). The sorbents exhibited good recycle-ability both in dry and humid conditions. Under humid conditions, the diffusion resistance of the sorbents at the initial stage of CO2 adsorption was observed. This study suggests that CA with large pore size could be utilized as promising amine sorbent for post-combustion CO2 capture.


Ultra-high pore volume pH Carbon aerogels Amine CO2 adsorption 



This work was supported by the National Natural Science Fundation of China (Grant No. 51406169).

Supplementary material

10934_2019_733_MOESM1_ESM.doc (522 kb)
Supplementary material 1 (DOC 521 KB)


  1. 1.
    R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Energy Fuels 20(4), 1514–1520 (2006)CrossRefGoogle Scholar
  2. 2.
    C. Chen, S. Zhang, K.H. Row, W.S. Ahn, J. Energy Chem. 26(5), 868–880 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, A. Goeppert, M. Czaun, G.K.S. Prakash, G.A. Olah, RSC Adv. 4, 19403–19417 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Wang, H. Shang, L. Li, X. Yan, Z. Yan, C. Liu, Q. Zha, J. Nat. Gas Chem. 21, 319–323 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Wang, M. Wang, B. Zhao, W. Qiao, D. Long, L. Ling, Ind. Eng. Chem. Res. 52, 5437–5444 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Gadipelli, H.A. Patel, Z. Guo, Adv. Mater. 27, 4903–4909 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Wang, X. Ma, C. Sentorun-Shalaby, C. Song, Ind. Eng. Chem. Res. 51, 3048–3057 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Hu, C. Li, D. Wan, K. Li, C. Yu, W. Kong, J. Porous Mater. 25, 1691–1696 (2018)CrossRefGoogle Scholar
  9. 9.
    L.A. Darunte, A.D. Oetomo, K.S. Walton, D.S. Sholl, C.W. Jones, ACS Sustain. Chem. Eng. 4, 5761–5768 (2016)CrossRefGoogle Scholar
  10. 10.
    F. Song, Y. Zhao, Q. Zhong, J. Environ. Sci. 25, 554–560 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Liu, K. Huang, C.J. Yoo, C. Okonkwo, D.J. Tao, C.W. Jones, S. Dai, Chem. Eng. J. 314, 466–476 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Jung, D.H. Jo, C.H. Lee, W. Chung, D. Shin, S.H. Kim, Energy Fuels 28, 3994–4001 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Maleki, Chem. Eng. J. 300, 98–118 (2016)CrossRefGoogle Scholar
  14. 14.
    N.N. Linneen, R. Pfeffer, Y. Lin, Ind. Eng. Chem. Res. 52, 14671–14679 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Kong, G. Jiang, Y. Wu, S. Cui, X. Shen, Chem. Eng. J. 306, 362–368 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Kong, X. Shen, S. Cui, M. Fan, Appl. Energy 147, 308–317 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Kong, X. Shen, S. Cui, M. Fan, RSC Adv. 4, 64193–64199 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Begag, H. Krutka, W. Dong, D. Mihalcik, W. Rhine, G. Gould, J. Baldic, P. Nahass, Greenhouse Gases: Sci. Technol. 3, 30–39 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, A. Goeppert, G.A. Olah, G.K.S. Prakash, J. CO2 Util. 19, 91–99 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Zeleňák, M. Badaničová, D. Halamová, J. Čejka, A. Zukal, N. Murafa, G. Goerigk, Chem. Eng. J. 144, 336–342 (2008)CrossRefGoogle Scholar
  21. 21.
    T. Witoon, Mater. Chem. Phys. 137, 235–245 (2012)CrossRefGoogle Scholar
  22. 22.
    W. Xie, M. Yu, R. Wang, Aerosol Air Qual. Res. 17, 2715–2725 (2017)CrossRefGoogle Scholar
  23. 23.
    A.D. Ebner, M.L. Gray, N.G. Chisholm, Q.T. Black, D.D. Mumford, M.A. Nicholson, J.A. Ritter, Ind. Eng. Chem. Res. 50, 5634–5641 (2011)CrossRefGoogle Scholar
  24. 24.
    S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101–114 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Han, K. Sohn, T. Hyeon, Chem. Mater. 12, 3337–3341 (2000)CrossRefGoogle Scholar
  26. 26.
    A. Olea, E.S. Sanz-Pérez, A. Arencibia, R. Sanz, G. Calleja, Adsorption 19, 589–600 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Pino, C. Italiano, A. Vita, C. Fabiano, V. Recupero, J. Environ. Sci. 48, 138–150 (2016)CrossRefGoogle Scholar
  28. 28.
    E. Vilarrasa-Garcia, E.M.O. Moya, J.A. Cecilia, C.L. Cavalcante, J. Jiménez-Jiménez, D.C.S. Azevedo, E. Rodríguez-Castellón, Microporous Mesoporous Mater. 209, 172–183 (2015)CrossRefGoogle Scholar
  29. 29.
    M.S. Shafeeyan, W.M.A.W. Daud, A. Houshmand, A. Arami-Niya, Appl. Surf. Sci. 257, 3936–3942 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Ye, Z.-H. Ji, W.J. Han, J.D. Hu, T. Zhao, J. Am. Ceram. Soc. 93, 1156–1163 (2010)CrossRefGoogle Scholar
  31. 31.
    W.-C. Li, A.H. Lu, S.C. Guo, Carbon 39, 1989–1994 (2001)CrossRefGoogle Scholar
  32. 32.
    K. Li, J. Jiang, S. Tian, F. Yan, X. Chen, J. Mater. Chem. A 3, 2166–2175 (2015)CrossRefGoogle Scholar
  33. 33.
    C.S. Srikanth, S.S.C. Chuang, J. Phys. Chem. C 117, 9196–9205 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Wang, Q. Guo, T. Kong, Chem. Eng. J. 273, 472–480 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Feng, G. Hu, X. Hu, G. Xie, Y. Xie, J. Lu, M. Luo, Ind. Eng. Chem. Res. 52, 4221–4228 (2013)CrossRefGoogle Scholar
  36. 36.
    T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Microporous Mesoporous Mater. 116, 504–512 (2008)CrossRefGoogle Scholar
  37. 37.
    X. Wang, V. Schwartz, J.C. Clark, X. Ma, S.H. Overbury, X. Xu, C. Song, J. Phys. Chem. C 113, 7260–7268 (2009)CrossRefGoogle Scholar
  38. 38.
    Z. Bacsik, R. Atluri, A.E. Garcia-Bennett, N. Hedin, Langmuir 26, 10013–10024 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Niu, H. Yang, X. Zhang, Y. Wang, A. Tang, ACS Appl. Mater. Interfaces 8, 17312–17320 (2016)CrossRefGoogle Scholar
  40. 40.
    G. Qi, Y. Wang, L. Estevez, X. Duan, N. Anako, A.H.A. Park, W. Li, C.W. Jones, E.P. Giannelis, Energy Environ. Sci. 4, 444–452 (2011)CrossRefGoogle Scholar
  41. 41.
    N. Minju, P. Abhilash, B.N. Nair, A.P. Mohamed, S. Ananthakumar, Chem. Eng. J. 269, 335–342 (2015)CrossRefGoogle Scholar
  42. 42.
    M.A. Sakwa-Novak, C.J. Yoo, S. Tan, F. Rashidi, C.W. Jones, ChemSusChem 9, 1859–1868 (2016)CrossRefGoogle Scholar
  43. 43.
    N.K. Sandhu, D. Pudasainee, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 55, 2210–2220 (2016)CrossRefGoogle Scholar
  44. 44.
    Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 65, 3695–3698 (2010)CrossRefGoogle Scholar
  45. 45.
    L. Zhang, N. Zhan, Q. Jin, H. Liu, J. Hu, Ind. Eng. Chem. Res. 55, 5885–5891 (2016)CrossRefGoogle Scholar
  46. 46.
    J. Zhao, F. Simeon, Y. Wang, G. Luo, T.A. Hatton, RSC Adv. 2, 6509–6519 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Goeppert, M. Czaun, R.B. May, G.K. Prakash, G.A. Olah, S.R. Narayanan, J. Am. Chem. Soc. 133, 20164–20167 (2011)CrossRefGoogle Scholar
  48. 48.
    X. Wang, C. Song, Catal. Today 194, 44–52 (2012)CrossRefGoogle Scholar
  49. 49.
    P. Zhao, G. Zhang, Y. Sun, Y. Xu, Energy Fuels 31, 12508–12520 (2017)CrossRefGoogle Scholar
  50. 50.
    J. Han, Z. Du, W. Zou, H. Li, C. Zhang, Ind. Eng. Chem. Res. 54, 7623–7631 (2015)CrossRefGoogle Scholar
  51. 51.
    M.W. Hahn, M. Steib, A. Jentys, J.A. Lercher, J. Phys. Chem. C 119, 4126–4135 (2015)CrossRefGoogle Scholar
  52. 52.
    W. Yan, J. Tang, Z. Bian, J. Hu, H. Liu, Ind. Eng. Chem. Res. 51(9), 3653–3662 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liang Chen
    • 1
  • Yan Cheng
    • 3
  • Yongjun Liu
    • 1
    • 2
    Email author
  • Deming Luo
    • 2
  1. 1.College of Architecture and EnvironmentSichuan UniversityChengduChina
  2. 2.National Engineering Technology Research Center for Flue Gas DesulfurizationChengduChina
  3. 3.Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations