Advertisement

Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant

  • Bing Yan
  • Bolong Wang
  • Luyi Wang
  • Tao JiangEmail author
Article
  • 14 Downloads

Abstract

Ce-doped mesoporous alumina supported Fe-based catalyst (Fe2O3/Meso-CeAl) was prepared and employed for 1,3-butadiene (BD) synthesis by oxidative dehydrogenation of 1-butene, using CO2 as soft oxidant. The worm-like porous structure of Fe2O3/Meso-CeAl catalyst with highly dispersed Ce in alumina matrix and high dispersion of iron species on Meso-CeAl surface was confirmed by N2 adsorption, transmission electron microscopy and X-ray diffraction results. Compared with Fe2O3/γ-Al2O3 and Fe2O3/Meso-Al2O3 catalysts, X-ray photoelectron spectroscopy and CO2-TPD results respectively demonstrated the increasing in oxygen storage capacity and improvement in CO2 adsorption and activation ability for Fe2O3/Meso-CeAl-100 catalyst. Consequently, the Fe2O3/Meso-CeAl-100 catalyst showed excellent catalytic activity (1879 gBD/kgcat/h), high CO2 conversion (14%) and high BD selectivity (51%). Not only the structural properties and highly dispersed iron species, but also the good oxygen storage capacity and thus good CO2 adsorption and activation ability contributed positively to the good performance of Fe2O3/Meso-CeAl-100 catalyst.

Keywords

Ce-doped mesoporous alumina 1,3-Butadiene 1-Butene CO2 Oxidative dehydrogenation 

Notes

Acknowledgements

We thank the sponsorship of the National Natural Science Foundation of China (NSFC) (Grant No. 21606172) and the PetroChina Innovation Foundation (2016D-5007-0502).

Supplementary material

10934_2019_726_MOESM1_ESM.docx (142 kb)
Supplementary material 1 (DOCX 141 KB)

References

  1. 1.
    E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Chem. Soc. Rev. 43(22), 7917–7953 (2014)CrossRefGoogle Scholar
  2. 2.
    W.C. White, Chem. Biol. Interact. 166, 10–14 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, Catal. Today 264, 180–184 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, RSC Adv. 5(53), 42609–42615 (2015)CrossRefGoogle Scholar
  5. 5.
    W. Yan, Q.Y. Kouk, S.X. Tan, J. Luo, Y. Liu, J. CO2 Util. 15, 154–159 (2016)Google Scholar
  6. 6.
    L. Zhang, Z.L. Wu, N.C. Nelson, A.D. Sadow, I.I. Slowing, S.H. Overbury, ACS Catal. 5(11), 6426–6435 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Chen, J. Xu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, J. Catal. 272(1), 101–108 (2010)CrossRefGoogle Scholar
  8. 8.
    N. Mimura, M. Okamoto, H. Yamashita, S.T. Oyama, K. Murata, J. Phys. Chem. B 110(43), 21764–21770 (2006)CrossRefGoogle Scholar
  9. 9.
    M.B. Ansari, S.E. Park, Energ. Environ. Sci. 5(11), 9419–9437 (2012)CrossRefGoogle Scholar
  10. 10.
    D. Mukherjee, S.E. Park, B.M. Reddy, J. CO2 Util. 16, 301–312 (2016)Google Scholar
  11. 11.
    Y. Gao, B.L. Wang, B. Yan, J. Li, F. Alam, Z.Z. Xiao, T. Jiang, React. Kinet. Mech. Catal. 122(1), 451–462 (2017)CrossRefGoogle Scholar
  12. 12.
    S.B. Wang, Z.H. Zhu, Energ. Fuel 18(4), 1126–1139 (2004)CrossRefGoogle Scholar
  13. 13.
    J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, E. Bard, Nature 484(7392), 49–54 (2012)CrossRefGoogle Scholar
  14. 14.
    M.D. Porosoff, J.W. Baldwin, X. Peng, G. Mpourmpakis, H.D. Willauer, ChemSusChem 10(11), 2408–2415 (2017)CrossRefGoogle Scholar
  15. 15.
    L.H. Yang, H.M. Wang, ChemSusChem 7(4), 962–998 (2014)CrossRefGoogle Scholar
  16. 16.
    W.J. Yan, Q.Y. Kouk, J.Z. Luo, Y. Liu, A. Borgna, Catal. Commun. 46, 208–212 (2014)CrossRefGoogle Scholar
  17. 17.
    W.J. Yan, J.Z. Luo, Q.Y. Kouk, J.E. Zheng, Z.Y. Zhong, Y. Liu, A. Borgna, Appl. Catal. A 508, 61–67 (2015)CrossRefGoogle Scholar
  18. 18.
    Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, J. Am. Chem. Soc. 130(11), 3465–3472 (2008)CrossRefGoogle Scholar
  19. 19.
    H. Ham, J. Kim, S.J. Cho, J.H. Choi, D.J. Moon, J.W. Bae, ACS Catal. 6(9), 5629–5640 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Zhou, Y. Zhou, J. Shi, Y. Zhang, X. Sheng, Z. Zhang, J. Mater. Sci. 50(11), 3984–3993 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Yan, Y. Gao, B.L. Wang, X.T. Fan, F. Alam, J. Li, T. Jiang, ChemCatChem 9(24), 4480–4483 (2017)CrossRefGoogle Scholar
  22. 22.
    B.K. Vu, M.B. Song, I.Y. Ahn, Y.W. Suh, D.J. Suh, W.I. Kim, H.L. Koh, Y.G. Choi, E.W. Shin, Catal. Today 164(1), 214–220 (2011)CrossRefGoogle Scholar
  23. 23.
    W.Z. Zhang, T.J. Pinnavaia, Chem. Commun. 1185–1186 (1998)Google Scholar
  24. 24.
    Q. Yuan, H.H. Duan, L.L. Li, Z.X. Li, W.T. Duan, L.S. Zhang, W.G. Song, C.H. Yan, Adv. Mater. 22(13), 1475–1478 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Huang, Y. Zheng, Z.H. Li, Y.H. Xiao, G.H. Cai, K.M. Wei, Chem. Commun. 47(18), 5247–5249 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong. Appl. Catal. B. 181, 321–331 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Cejka, P.J. Kooyman, L. Vesela, J. Rathousky, A. Zukal, Phys. Chem. Chem. Phys. 4(19), 4823–4829 (2002)CrossRefGoogle Scholar
  28. 28.
    X. Zhu, K.Z. Li, Y.G. Wei, H. Wang, L.Y. Sun, Energ. Fuel 28(2), 754–760 (2014)CrossRefGoogle Scholar
  29. 29.
    K.Z. Li, H. Wang, Y.G. Wei, D.X. Yan, Chem. Eng. J. 173(2), 574–582 (2011)CrossRefGoogle Scholar
  30. 30.
    J.C. Jung, H. Lee, H. Kim, S. Park, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh, Y.S. Kim, I.K. Song, Catal. Commun. 9(10), 2059–2062 (2008)CrossRefGoogle Scholar
  31. 31.
    J.L. Zhang, H. Hu, J. Xu, G.M. Wu, Z.W. Zeng, J. Environ. Sci. 26(7), 1437–1443 (2014)CrossRefGoogle Scholar
  32. 32.
    B.R. Zhao, Y.X. Pan, C.J. Liu, Catal. Today 194(1), 60–64 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293–302 (2016)CrossRefGoogle Scholar
  34. 34.
    K.R. Hahn, A.P. Seitsonen, M. Iannuzzi, J. Hutter, ChemCatChem 7(4), 625–634 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Yoshikawa, H. Sato, M. Kaneeda, J.N. Kondo, J. CO2 Util. 8, 34–38 (2014)Google Scholar
  36. 36.
    B. Yan, L.Y. Wang, B.L. Wang, F. Alam, Z.Z. Xiao, J. Li, T. Jiang, Appl. Catal. A 572, 71–79 (2019)CrossRefGoogle Scholar
  37. 37.
    L. Chen, S.P. Wang, J.J. Zhou, Y.L. Shen, Y.J. Zhao, X.B. Ma, RSC Adv. 4(59), 30968–30975 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Staudt, Y. Lykhach, N. Tsud, T. Skala, K.C. Prince, V. Matolin, J. Libuda, J. Phys. Chem. C 115(17), 8716–8724 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical Engineering and Materials ScienceTianjin University of Science & TechnologyTianjinChina

Personalised recommendations