Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant
- 14 Downloads
Abstract
Ce-doped mesoporous alumina supported Fe-based catalyst (Fe2O3/Meso-CeAl) was prepared and employed for 1,3-butadiene (BD) synthesis by oxidative dehydrogenation of 1-butene, using CO2 as soft oxidant. The worm-like porous structure of Fe2O3/Meso-CeAl catalyst with highly dispersed Ce in alumina matrix and high dispersion of iron species on Meso-CeAl surface was confirmed by N2 adsorption, transmission electron microscopy and X-ray diffraction results. Compared with Fe2O3/γ-Al2O3 and Fe2O3/Meso-Al2O3 catalysts, X-ray photoelectron spectroscopy and CO2-TPD results respectively demonstrated the increasing in oxygen storage capacity and improvement in CO2 adsorption and activation ability for Fe2O3/Meso-CeAl-100 catalyst. Consequently, the Fe2O3/Meso-CeAl-100 catalyst showed excellent catalytic activity (1879 gBD/kgcat/h), high CO2 conversion (14%) and high BD selectivity (51%). Not only the structural properties and highly dispersed iron species, but also the good oxygen storage capacity and thus good CO2 adsorption and activation ability contributed positively to the good performance of Fe2O3/Meso-CeAl-100 catalyst.
Keywords
Ce-doped mesoporous alumina 1,3-Butadiene 1-Butene CO2 Oxidative dehydrogenationNotes
Acknowledgements
We thank the sponsorship of the National Natural Science Foundation of China (NSFC) (Grant No. 21606172) and the PetroChina Innovation Foundation (2016D-5007-0502).
Supplementary material
References
- 1.E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Chem. Soc. Rev. 43(22), 7917–7953 (2014)CrossRefGoogle Scholar
- 2.W.C. White, Chem. Biol. Interact. 166, 10–14 (2007)CrossRefGoogle Scholar
- 3.C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, Catal. Today 264, 180–184 (2016)CrossRefGoogle Scholar
- 4.C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, RSC Adv. 5(53), 42609–42615 (2015)CrossRefGoogle Scholar
- 5.W. Yan, Q.Y. Kouk, S.X. Tan, J. Luo, Y. Liu, J. CO2 Util. 15, 154–159 (2016)Google Scholar
- 6.L. Zhang, Z.L. Wu, N.C. Nelson, A.D. Sadow, I.I. Slowing, S.H. Overbury, ACS Catal. 5(11), 6426–6435 (2015)CrossRefGoogle Scholar
- 7.M.A. Chen, J. Xu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang, J. Catal. 272(1), 101–108 (2010)CrossRefGoogle Scholar
- 8.N. Mimura, M. Okamoto, H. Yamashita, S.T. Oyama, K. Murata, J. Phys. Chem. B 110(43), 21764–21770 (2006)CrossRefGoogle Scholar
- 9.M.B. Ansari, S.E. Park, Energ. Environ. Sci. 5(11), 9419–9437 (2012)CrossRefGoogle Scholar
- 10.D. Mukherjee, S.E. Park, B.M. Reddy, J. CO2 Util. 16, 301–312 (2016)Google Scholar
- 11.Y. Gao, B.L. Wang, B. Yan, J. Li, F. Alam, Z.Z. Xiao, T. Jiang, React. Kinet. Mech. Catal. 122(1), 451–462 (2017)CrossRefGoogle Scholar
- 12.S.B. Wang, Z.H. Zhu, Energ. Fuel 18(4), 1126–1139 (2004)CrossRefGoogle Scholar
- 13.J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, E. Bard, Nature 484(7392), 49–54 (2012)CrossRefGoogle Scholar
- 14.M.D. Porosoff, J.W. Baldwin, X. Peng, G. Mpourmpakis, H.D. Willauer, ChemSusChem 10(11), 2408–2415 (2017)CrossRefGoogle Scholar
- 15.L.H. Yang, H.M. Wang, ChemSusChem 7(4), 962–998 (2014)CrossRefGoogle Scholar
- 16.W.J. Yan, Q.Y. Kouk, J.Z. Luo, Y. Liu, A. Borgna, Catal. Commun. 46, 208–212 (2014)CrossRefGoogle Scholar
- 17.W.J. Yan, J.Z. Luo, Q.Y. Kouk, J.E. Zheng, Z.Y. Zhong, Y. Liu, A. Borgna, Appl. Catal. A 508, 61–67 (2015)CrossRefGoogle Scholar
- 18.Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, J. Am. Chem. Soc. 130(11), 3465–3472 (2008)CrossRefGoogle Scholar
- 19.H. Ham, J. Kim, S.J. Cho, J.H. Choi, D.J. Moon, J.W. Bae, ACS Catal. 6(9), 5629–5640 (2016)CrossRefGoogle Scholar
- 20.S. Zhou, Y. Zhou, J. Shi, Y. Zhang, X. Sheng, Z. Zhang, J. Mater. Sci. 50(11), 3984–3993 (2015)CrossRefGoogle Scholar
- 21.B. Yan, Y. Gao, B.L. Wang, X.T. Fan, F. Alam, J. Li, T. Jiang, ChemCatChem 9(24), 4480–4483 (2017)CrossRefGoogle Scholar
- 22.B.K. Vu, M.B. Song, I.Y. Ahn, Y.W. Suh, D.J. Suh, W.I. Kim, H.L. Koh, Y.G. Choi, E.W. Shin, Catal. Today 164(1), 214–220 (2011)CrossRefGoogle Scholar
- 23.W.Z. Zhang, T.J. Pinnavaia, Chem. Commun. 1185–1186 (1998)Google Scholar
- 24.Q. Yuan, H.H. Duan, L.L. Li, Z.X. Li, W.T. Duan, L.S. Zhang, W.G. Song, C.H. Yan, Adv. Mater. 22(13), 1475–1478 (2010)CrossRefGoogle Scholar
- 25.F. Huang, Y. Zheng, Z.H. Li, Y.H. Xiao, G.H. Cai, K.M. Wei, Chem. Commun. 47(18), 5247–5249 (2011)CrossRefGoogle Scholar
- 26.H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong. Appl. Catal. B. 181, 321–331 (2016)CrossRefGoogle Scholar
- 27.J. Cejka, P.J. Kooyman, L. Vesela, J. Rathousky, A. Zukal, Phys. Chem. Chem. Phys. 4(19), 4823–4829 (2002)CrossRefGoogle Scholar
- 28.X. Zhu, K.Z. Li, Y.G. Wei, H. Wang, L.Y. Sun, Energ. Fuel 28(2), 754–760 (2014)CrossRefGoogle Scholar
- 29.K.Z. Li, H. Wang, Y.G. Wei, D.X. Yan, Chem. Eng. J. 173(2), 574–582 (2011)CrossRefGoogle Scholar
- 30.J.C. Jung, H. Lee, H. Kim, S. Park, Y.M. Chung, T.J. Kim, S.J. Lee, S.H. Oh, Y.S. Kim, I.K. Song, Catal. Commun. 9(10), 2059–2062 (2008)CrossRefGoogle Scholar
- 31.J.L. Zhang, H. Hu, J. Xu, G.M. Wu, Z.W. Zeng, J. Environ. Sci. 26(7), 1437–1443 (2014)CrossRefGoogle Scholar
- 32.B.R. Zhao, Y.X. Pan, C.J. Liu, Catal. Today 194(1), 60–64 (2012)CrossRefGoogle Scholar
- 33.Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293–302 (2016)CrossRefGoogle Scholar
- 34.K.R. Hahn, A.P. Seitsonen, M. Iannuzzi, J. Hutter, ChemCatChem 7(4), 625–634 (2015)CrossRefGoogle Scholar
- 35.K. Yoshikawa, H. Sato, M. Kaneeda, J.N. Kondo, J. CO2 Util. 8, 34–38 (2014)Google Scholar
- 36.B. Yan, L.Y. Wang, B.L. Wang, F. Alam, Z.Z. Xiao, J. Li, T. Jiang, Appl. Catal. A 572, 71–79 (2019)CrossRefGoogle Scholar
- 37.L. Chen, S.P. Wang, J.J. Zhou, Y.L. Shen, Y.J. Zhao, X.B. Ma, RSC Adv. 4(59), 30968–30975 (2014)CrossRefGoogle Scholar
- 38.T. Staudt, Y. Lykhach, N. Tsud, T. Skala, K.C. Prince, V. Matolin, J. Libuda, J. Phys. Chem. C 115(17), 8716–8724 (2011)CrossRefGoogle Scholar