Advertisement

Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor

  • Lulu Qiang
  • Zhongai HuEmail author
  • Zhimin Li
  • Yuying Yang
  • Xiaotong Wang
  • Yi Zhou
  • Xinyuan Zhang
  • Wenbin Wang
  • Qian Wang
Article
  • 34 Downloads

Abstract

A facile one-step strategy is established to prepare nitrogen doped three-dimensional (3D) hierarchical porous carbon from buckwheat husk, in which the synchronous activation and nitrogen-doping is fulfilled via using KOH and urea. The obtained sample (BSCN-700) possesses an ultrahigh specific surface area of 2794.5 m2 g−1 with a unique carbon frame. The electrochemical measurements indicate that the resultant BSCN-700 exhibits a high specific capacitance of 326 F g−1 at current density of 1 A g−1, with good rate capability (78.4% capacitance retention at 100 A g−1) in 6 M KOH electrolyte. Furthermore, the as-prepared sample was used to assemble a symmetric supercapacitor filled with 6 M KOH electrolyte. As a result, the BSCN-700 symmetric supercapacitor displays a high energy density of 20.4 Wh kg−1 at a power density of 699 W kg−1 and good cycling stability which retains 95% of the initial capacitance at 5 A g−1 after 5000 cycles.

Keywords

Symmetric supercapacitor Buckwheat husk Nitrogen-doping Hierarchical porous carbon High rate capability 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support offered by the National Natural Science Foundation of China (20963009, 21163017, 21563027, and 21773187).

Supplementary material

10934_2019_723_MOESM1_ESM.docx (803 kb)
Supporting Information is available from the Wiley Online Library or from the author. Supplementary material 1 (DOCX 803 KB)

References

  1. 1.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7, 379–386 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6, 1244–1254 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, J. Mater. Chem. A 3, 18154–18162 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Genovese, J. Jiang, K. Lian, N. Holm, J. Mater. Chem. A 3, 2903–2913 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Power Sources 363, 375–383 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Guo, M. Li, X. Sun, F. Wang, R. Yang, Green Chem. 19, 2595–2602 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu, K. Cheng, K. Ye, K. Zhu, D. Cao, Z. Fan, J. Mater. Chem. A 5, 23085–23093 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Energ. Fuel 31, 977–985 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, B. Huang, X. Lin, Z. Xie, J. Mater. Chem. A 5, 13009–13018 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Sun, S. Yu, Z. Hu, Z. Li, G. Lei, Q. Xiao, Y. Ding, Electrochim. Acta 231, 417–428 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, J. Power Sources 302, 164–173 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Sevilla, R. Mokaya, Energy Environ. Sci. 7, 1250–1280 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Colloid Interface Sci. 523, 133–143 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li, G. Chen, J. Power Sources 378, 579–588 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Zhang, X. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chem. 19, 4132–4140 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan, J. Qiu, Chem. Commun. 52, 6673–6676 (2016)CrossRefGoogle Scholar
  18. 18.
    D.-W. Wang, F. Li, M. Liu, G. Lu, H.-M. Cheng, Angew. Chem. 120, 379–382 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, W. Song, K. Li, C. Lv, C. Chen, J. Mater. Chem. A 4, 1637–1646 (2016)CrossRefGoogle Scholar
  20. 20.
    C. Shi, L. Hu, K. Guo, H. Li, T. Zhai, Adv. Sustain. Syst. 1, 1600011 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2, 3223–3230 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, J. Power Sources 337, 45–53 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Jiang, P. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Ou, L. Yang, Z. Zhang, X. Xi, J. Power Sources 333, 193–202 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Zhao, L. Fan, M. Zhou, H. Guan, S. Qiao, M. Antonietti, M. Titirici, Adv. Mater. 22, 5202–5206 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Adv. Funct. Mater. 24, 3953–3961 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Patiño, N. López-Salas, M. Gutiérrez, D. Carriazo, M. Ferrer, F. Monte, J. Mater. Chem. A 4, 1251–1263 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Wang, Z. Guo, W. Shen, Q. Xu, H. Liu, Y. Wang, Adv. Funct. Mater. 24, 5511–5521 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. Stephenson et al., ACS Nano 7, 5131–5141 (2013)CrossRefGoogle Scholar
  30. 30.
    Q. Liang, L. Ye, Z. Huang, Q. Xu, Y. Bai, F. Kang, Q. Yang, Nanoscale 6, 13831–13837 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Wang, H. Yi, C. Zhu, X. Wang, H. Jin, Fan, Nano Energy 13, 658–669 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Ma, W. Huang, K. Chen, D. Xue, S. Komarneni, Nanosci. Nanotechnol. Lett. 6, 997–1000 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Chen, D. Xue, Chin. J. Chem. 35, 861–866 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. An, Z. Li, Y. Yang, B. Guo, Z. Zhang, H. Wu, Z. Hu, Adv. Mater. Interfaces 4, 1700033 (2017)CrossRefGoogle Scholar
  35. 35.
    Q. Zhang, Z. Hu, Y. Yang, Z. Zhang, X. Wang, X. Yang, Y. An, B. Guo, J. Alloys Compd. 735, 1673–1681 (2018)CrossRefGoogle Scholar
  36. 36.
    N. An, Y. An, Z. Hu, Y. Zhang, Y. Yang, Z. Lei, RSC Adv. 5, 63624–63633 (2015)CrossRefGoogle Scholar
  37. 37.
    X.-L. Su, M.-Y. Cheng, L. Fu, J.-H. Yang, X.-C. Zheng, X.-X. Guan, J. Power Sources 362, 27–38 (2017)CrossRefGoogle Scholar
  38. 38.
    C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 27, 377–389 (2016)CrossRefGoogle Scholar
  39. 39.
    E. Raymundo-Piñero, F. Leroux, F. Béguin, Adv. Mater. 18, 1877–1882 (2006)CrossRefGoogle Scholar
  40. 40.
    Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang, H.-L. Li, J. Power Sources 307, 391–400 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Wang, F. Li, L. Yin, X. Lu, Z. Chen, I. Gentle, G. Lu, H. Cheng, Chemistry 18, 5345–5351 (2012)CrossRefGoogle Scholar
  42. 42.
    X. Wei, Y. Li, S. Gao, J. Mater. Chem. A 5, 181–188 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Seredych, D. Hulicova-Jurcakova, G. Lu, T. Bandosz, Carbon 46, 1475–1488 (2008)CrossRefGoogle Scholar
  44. 44.
    S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Energy Environ. Sci. 8, 221–229 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Electrochim. Acta 180, 241–251 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations