Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor
- 34 Downloads
Abstract
A facile one-step strategy is established to prepare nitrogen doped three-dimensional (3D) hierarchical porous carbon from buckwheat husk, in which the synchronous activation and nitrogen-doping is fulfilled via using KOH and urea. The obtained sample (BSCN-700) possesses an ultrahigh specific surface area of 2794.5 m2 g−1 with a unique carbon frame. The electrochemical measurements indicate that the resultant BSCN-700 exhibits a high specific capacitance of 326 F g−1 at current density of 1 A g−1, with good rate capability (78.4% capacitance retention at 100 A g−1) in 6 M KOH electrolyte. Furthermore, the as-prepared sample was used to assemble a symmetric supercapacitor filled with 6 M KOH electrolyte. As a result, the BSCN-700 symmetric supercapacitor displays a high energy density of 20.4 Wh kg−1 at a power density of 699 W kg−1 and good cycling stability which retains 95% of the initial capacitance at 5 A g−1 after 5000 cycles.
Keywords
Symmetric supercapacitor Buckwheat husk Nitrogen-doping Hierarchical porous carbon High rate capabilityNotes
Acknowledgements
The authors gratefully acknowledge the financial support offered by the National Natural Science Foundation of China (20963009, 21163017, 21563027, and 21773187).
Supplementary material
References
- 1.W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7, 379–386 (2014)CrossRefGoogle Scholar
- 2.C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6, 1244–1254 (2018)CrossRefGoogle Scholar
- 3.S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, J. Mater. Chem. A 3, 18154–18162 (2015)CrossRefGoogle Scholar
- 4.M. Genovese, J. Jiang, K. Lian, N. Holm, J. Mater. Chem. A 3, 2903–2913 (2015)CrossRefGoogle Scholar
- 5.C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Power Sources 363, 375–383 (2017)CrossRefGoogle Scholar
- 6.N. Guo, M. Li, X. Sun, F. Wang, R. Yang, Green Chem. 19, 2595–2602 (2017)CrossRefGoogle Scholar
- 7.J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu, K. Cheng, K. Ye, K. Zhu, D. Cao, Z. Fan, J. Mater. Chem. A 5, 23085–23093 (2017)CrossRefGoogle Scholar
- 8.N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Energ. Fuel 31, 977–985 (2016)CrossRefGoogle Scholar
- 9.Y. Liu, B. Huang, X. Lin, Z. Xie, J. Mater. Chem. A 5, 13009–13018 (2017)CrossRefGoogle Scholar
- 10.K. Sun, S. Yu, Z. Hu, Z. Li, G. Lei, Q. Xiao, Y. Ding, Electrochim. Acta 231, 417–428 (2017)CrossRefGoogle Scholar
- 11.H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, J. Power Sources 302, 164–173 (2016)CrossRefGoogle Scholar
- 12.M. Sevilla, R. Mokaya, Energy Environ. Sci. 7, 1250–1280 (2014)CrossRefGoogle Scholar
- 13.C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Colloid Interface Sci. 523, 133–143 (2018)CrossRefGoogle Scholar
- 14.K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li, G. Chen, J. Power Sources 378, 579–588 (2018)CrossRefGoogle Scholar
- 15.L. Zhang, X. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
- 16.Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Green Chem. 19, 4132–4140 (2017)CrossRefGoogle Scholar
- 17.F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan, J. Qiu, Chem. Commun. 52, 6673–6676 (2016)CrossRefGoogle Scholar
- 18.D.-W. Wang, F. Li, M. Liu, G. Lu, H.-M. Cheng, Angew. Chem. 120, 379–382 (2008)CrossRefGoogle Scholar
- 19.L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, W. Song, K. Li, C. Lv, C. Chen, J. Mater. Chem. A 4, 1637–1646 (2016)CrossRefGoogle Scholar
- 20.C. Shi, L. Hu, K. Guo, H. Li, T. Zhai, Adv. Sustain. Syst. 1, 1600011 (2017)CrossRefGoogle Scholar
- 21.H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2, 3223–3230 (2014)CrossRefGoogle Scholar
- 22.Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, J. Power Sources 337, 45–53 (2017)CrossRefGoogle Scholar
- 23.H. Jiang, P. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)CrossRefGoogle Scholar
- 24.J. Ou, L. Yang, Z. Zhang, X. Xi, J. Power Sources 333, 193–202 (2016)CrossRefGoogle Scholar
- 25.L. Zhao, L. Fan, M. Zhou, H. Guan, S. Qiao, M. Antonietti, M. Titirici, Adv. Mater. 22, 5202–5206 (2010)CrossRefGoogle Scholar
- 26.C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Adv. Funct. Mater. 24, 3953–3961 (2014)CrossRefGoogle Scholar
- 27.J. Patiño, N. López-Salas, M. Gutiérrez, D. Carriazo, M. Ferrer, F. Monte, J. Mater. Chem. A 4, 1251–1263 (2016)CrossRefGoogle Scholar
- 28.C. Wang, Z. Guo, W. Shen, Q. Xu, H. Liu, Y. Wang, Adv. Funct. Mater. 24, 5511–5521 (2014)CrossRefGoogle Scholar
- 29.H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. Stephenson et al., ACS Nano 7, 5131–5141 (2013)CrossRefGoogle Scholar
- 30.Q. Liang, L. Ye, Z. Huang, Q. Xu, Y. Bai, F. Kang, Q. Yang, Nanoscale 6, 13831–13837 (2014)CrossRefGoogle Scholar
- 31.H. Wang, H. Yi, C. Zhu, X. Wang, H. Jin, Fan, Nano Energy 13, 658–669 (2015)CrossRefGoogle Scholar
- 32.J. Ma, W. Huang, K. Chen, D. Xue, S. Komarneni, Nanosci. Nanotechnol. Lett. 6, 997–1000 (2014)CrossRefGoogle Scholar
- 33.K. Chen, D. Xue, Chin. J. Chem. 35, 861–866 (2017)CrossRefGoogle Scholar
- 34.Y. An, Z. Li, Y. Yang, B. Guo, Z. Zhang, H. Wu, Z. Hu, Adv. Mater. Interfaces 4, 1700033 (2017)CrossRefGoogle Scholar
- 35.Q. Zhang, Z. Hu, Y. Yang, Z. Zhang, X. Wang, X. Yang, Y. An, B. Guo, J. Alloys Compd. 735, 1673–1681 (2018)CrossRefGoogle Scholar
- 36.N. An, Y. An, Z. Hu, Y. Zhang, Y. Yang, Z. Lei, RSC Adv. 5, 63624–63633 (2015)CrossRefGoogle Scholar
- 37.X.-L. Su, M.-Y. Cheng, L. Fu, J.-H. Yang, X.-C. Zheng, X.-X. Guan, J. Power Sources 362, 27–38 (2017)CrossRefGoogle Scholar
- 38.C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 27, 377–389 (2016)CrossRefGoogle Scholar
- 39.E. Raymundo-Piñero, F. Leroux, F. Béguin, Adv. Mater. 18, 1877–1882 (2006)CrossRefGoogle Scholar
- 40.Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang, H.-L. Li, J. Power Sources 307, 391–400 (2016)CrossRefGoogle Scholar
- 41.D. Wang, F. Li, L. Yin, X. Lu, Z. Chen, I. Gentle, G. Lu, H. Cheng, Chemistry 18, 5345–5351 (2012)CrossRefGoogle Scholar
- 42.X. Wei, Y. Li, S. Gao, J. Mater. Chem. A 5, 181–188 (2016)CrossRefGoogle Scholar
- 43.M. Seredych, D. Hulicova-Jurcakova, G. Lu, T. Bandosz, Carbon 46, 1475–1488 (2008)CrossRefGoogle Scholar
- 44.S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Energy Environ. Sci. 8, 221–229 (2015)CrossRefGoogle Scholar
- 45.H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Electrochim. Acta 180, 241–251 (2015)CrossRefGoogle Scholar