Magnetically separable porous titanosilicate/Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under UV light irradiation

  • Ajay Kumar Adepu
  • Srinath Goskula
  • Suman Chirra
  • Suresh Siliveri
  • Sripal Reddy Gujjula
  • Narayanan VenkatathriEmail author


Magnetically separable mesoporous titanosilicate-Fe3O4 (FTS) hybrid nanocomposite has been developed. The synthesized porous FTS were well characterized by various analytical techniques like XRD, field emission SEM, TEM, BET, FT-IR, and UV–Vis diffused reflectance spectra for morphological and chemical properties evaluation. FESEM and TEM results shows the growth of finely distributed Fe3O4 particles in the titanosilicate matrix, its porous FTS has a great influence on the electronic and optical properties. More significantly, the FTS nanocomposite exhibit enhanced photocatalytic activity for the degradation of methylene blue under UV light irradiation. The optimum photocatalytic activity of FTS15 at 15 wt% of Fe3O4 under visible light is almost 3.5 and fivefold higher than pure titanosilicate (TS) and pure Fe3O4 (FO) respectively. We conformed that synthesized FTS15 hybrid photo catalyst are highly stable even after five successive experimental runs by XRD spectra. The improved photocatalytic performance of the FTS15 hybrid nanocomposite under UV light irradiation was due to the synergistic effect of the pure TS and pure FO. Therefore, FTS15 hybrid photo catalyst is a promising candidate for energy conversion and environmental remediation.


Mesoporous Titanosilicate Methylene blue dye Photocatalysis 



Authors are thankful to the MHRD, New Delhi and DST-SERB (EMR/2014/000629), New Delhi for partial funding.

Supplementary material

10934_2019_719_MOESM1_ESM.docx (165 kb)
Supplementary material 1 (DOCX 165 KB)


  1. 1.
    J. Tian, L. Zhang, X. Fan, Y. Zhou, M. Wang, R. Cheng, M. Li, X. Kan, X. Jin, Z. Liu et al., A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J. Mater. Chem. A 4(36), 13814–13821 (2016)Google Scholar
  2. 2.
    Y. Huang, Y. Liu, D. Zhu, Y. Xin, B. Zhang, Mediator-free Z-scheme photocatalytic system based on ultrathin CdS nanosheets for efficient hydrogen evolution. J. Mater. Chem. A 4(35), 13626–13635 (2016)Google Scholar
  3. 3.
    B. Liu, Z. Jin, L. Bai, J. Liang, Q. Zhang, N. Wang, C. Liu, C. Wei, Y. Zhao, X. Zhang, Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices. J. Mater. Chem. A 4(37), 14204–14212 (2016)Google Scholar
  4. 4.
    X. Chang, T. Wang, Gong, J., CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016)Google Scholar
  5. 5.
    W.-N. Wang, Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual. Res. 14(2), 533–549 (2014)Google Scholar
  6. 6.
    M. Marszewski, S. Cao, J. Yu, M. Jaroniec, Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2(3), 261–278 (2015)Google Scholar
  7. 7.
    H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5(5), 6732 (2012)Google Scholar
  8. 8.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012)Google Scholar
  9. 9.
    S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A 1(17), 5333 (2013)Google Scholar
  10. 10.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B 49(1), 1–14 (2004)Google Scholar
  11. 11.
    A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008)Google Scholar
  12. 12.
    X. Lu, Q. Wang, D. Cui, Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol. 26(10), 925–930 (2010)Google Scholar
  13. 13.
    Y.H. Sehlleier, S. Hardt, C. Schulz, H. Wiggers, A novel magnetically-separable porous iron-oxide nanocomposite as an adsorbent for methylene blue (MB) dye. J. Environ. Chem. Eng. 4(4), 3779–3787 (2016)Google Scholar
  14. 14.
    S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 117(49), 26135–26143 (2013)Google Scholar
  15. 15.
    M. Taramasso, G. P. and B. N. United States Patent [19], 1983Google Scholar
  16. 16.
    J.H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X.S. Zhao, Porous photocatalysts for advanced water purifications. J. Mater. Chem. 20(22), 4512 (2010)Google Scholar
  17. 17.
    M. Moliner, A. Corma, Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater. 189, 31–40 (2014)Google Scholar
  18. 18.
    S. Uma, S. Rodrigues, I.N. Martyanov, K.J. Klabunde, Exploration of photocatalytic activities of titanosilicate ETS-10 and transition metal incorporated ETS-10. Microporous Mesoporous Mater. 67(2–3), 181–187 (2004)Google Scholar
  19. 19.
    F.X. Llabrés i Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina, Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 125(8), 2264–2271 (2003)Google Scholar
  20. 20.
    S.K. Das, M.K. Bhunia, A. Bhaumik, Highly ordered Ti-SBA-15: efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. J. Solid State Chem. 183(6), 1326–1333 (2010)Google Scholar
  21. 21.
    S. Anandan, Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors. Dyes Pigments 76(2), 535–541 (2008)Google Scholar
  22. 22.
    C.M. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42(9), 3876–3893 (2013)Google Scholar
  23. 23.
    K.-M. Choi, T. Yokoi, T. Tatsumi, K. Kuroda, A novel route for preparation of Ti-containing mesoporous silica with high catalytic performance by using a molecular precursor tetrakis(tris-tert-butoxysiloxy)titanium. J. Mater. Chem. A 1(7), 2485 (2013)Google Scholar
  24. 24.
    M. Selvaraj, Highly active and green mesostructured titanosilicate catalysts synthesized for selective synthesis of benzoquinones. Catal. Sci. Technol. 4(8), 2674 (2014)Google Scholar
  25. 25.
    M.V. Barmatova, I.D. Ivanchikova, O.A. Kholdeeva, A.N. Shmakov, V.I. Zaikovskii, M.S. Mel’gunov, Magnetically separable titanium-silicate mesoporous materials with core–shell morphology: synthesis, characterization and catalytic properties. J. Mater. Chem. 19(39), 7332 (2009)Google Scholar
  26. 26.
    L. Ren, S. Huang, W. Fan, T. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl. Surf. Sci. 258(3), 1132–1138 (2011)Google Scholar
  27. 27.
    G. Xi, B. Yue, J. Cao, J. Ye, Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem. Eur. J. 17(18), 5145–5154 (2011)Google Scholar
  28. 28.
    R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7(5) 4093–4104 (2013)Google Scholar
  29. 29.
    X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19(18), 2710 (2009)Google Scholar
  30. 30.
    J. Su, M. Cao, L. Ren, C. Hu, Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 115(30), 14469–14477 (2011)Google Scholar
  31. 31.
    X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou, H. Zhang, Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115(44), 21567–21573 (2011)Google Scholar
  32. 32.
    P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)Google Scholar
  33. 33.
    H.M. Abdelaal, Fabrication of hollow silica microspheres utilizing a hydrothermal approach. Chin. Chem. Lett. 25(4), 627–629 (2014)Google Scholar
  34. 34.
    S. Tonda, S. Kumar, V. Shanker, In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J. Environ. Chem. Eng. 3(2), 852–861 (2015)Google Scholar
  35. 35.
    J. Xie, K. Chen, H. Lee, C. Xu, A.R. Hsu, S. Peng, X. Chen, S. Sun, Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc. 130(24), 7542–7543 (2008)Google Scholar
  36. 36.
    J. Sudhakareddy, R. Kumar, Synthesis, characterization, and catalytic properties of a titanium silicate, TS-2, with MEL structure. J. Catal. 130(2), 440–446 (1991)Google Scholar
  37. 37.
    A.K. Adepu, R. Anumula, V. Narayanan, Photocatalytic degradation of rhodamine B over a novel mesoporous titanosilicate/g-C3N4 nanocomposite under direct sunlight irradiation. Microporous Mesoporous Mater. 247, 86–94 (2017)Google Scholar
  38. 38.
    Y. Cao, C. Li, J. Li, Q. Li, J. Yang, Magnetically separable Fe3O4/AgBr hybrid materials: highly efficient photocatalytic activity and good stability. Nanoscale Res. Lett. 10(1), 251 (2015)Google Scholar
  39. 39.
    A.K. Adepu, V. Katta, V. Narayanan, Synthesis, characterization, and photocatalytic degradation of rhodamine B dye under sunlight irradiation of porous titanosilicate (TS)/bismuth vanadate (BiVO4) nanocomposite hybrid catalyst. New J. Chem. 41(6), 2498–2504 (2017)Google Scholar
  40. 40.
    S. Xuan, W. Jiang, X. Gong, Y. Hu, Z. Chen, Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. J. Phys. Chem. C 113(2), 553–558 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Technology WarangalWarangalIndia
  2. 2.CMR College of Engineering and Technology (UGC Autonomous)HyderabadIndia

Personalised recommendations