Advertisement

Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources

  • Nichapha Senamart
  • Siriphorn Buttha
  • Waenkaew Pantupho
  • Iskra Z. Koleva
  • Sirinuch LoihaEmail author
  • Hristiyan A. AleksandrovEmail author
  • Jatuporn Wittayakun
  • Georgi N. Vayssilov
Article
  • 28 Downloads

Abstract

Iron-containing HZSM-5 zeolites are materials with important industrial applications as catalysts. Their characterization is difficult due to the various possible Fe-containing species which can exist in the pores of HZSM-5 zeolites and their dependence on the preparation technique. Three Fe–HZSM-5 samples were prepared by ion-exchange technique using different iron precursors: containing only Fe2+ or Fe3+ ions, and containing equimolar mixture of Fe2+ and Fe3+ ions. The samples were characterized by various experimental techniques (XRD, FTIR, UV–Vis spectroscopy and XANES/EXAFS) in order to clarify the type of the Fe-containing species existing in the samples. Periodic density functional calculations were also performed to help in elucidation of the obtained structural information with the EXAFS data and in clarification of the relative stability of the various Fe-containing species in the pores of the HZSM-5 zeolites. In the samples prepared with only Fe2+ or Fe3+ ions dominate isolated iron species but binuclear FeOFe2+ species and small iron oxide clusters are also present. In the third sample, prepared from a precursor containing iron ions in both oxidation states, most of the iron is included in the iron oxide clusters or small nanoparticles. The time-resolved XAS for the sample containing equimolar Fe2+ and Fe3+ ions revealed existence of two types of dominant iron oxide species—small oligonuclear clusters in the temperature region 100–300 °C and larger more oxidized moieties (nanoparticles) after heating the sample up to 400 and 500 °C.

Keywords

DFT Density functional modeling Zeolite EXAFS Quantum-chemical calculations UV–Vis 

Notes

Acknowledgements

NS, SB, WP, SL, and JW acknowledge the financial support by the Thailand Research Fund (TRF MRG5480049), Center of Excellence for Innovation in Chemistry (PERCH-CIC), Khon Kaen University, and Beamline 2.2, Synchrotron Light Research Institute (SLRI), Thailand. IZK, HAA, and GNV gratefully acknowledge the support by the Horizon 2020 program of the European Union (project Materials Networking - grant agreement 692146, and COST Action MP1306) and computational resources provided by the Bulgarian supercomputer Avitohol. HAA and IZK acknowledge financial support by the Bulgarian Science Fund (project DCOST01/18).

References

  1. 1.
    V.I. Sobolev, G.I. Panov, A.S. Kharitonov, V.N. Romannikov, A.M. Volodin, K.G. Ione, J. Catal. 139, 435 (1993)CrossRefGoogle Scholar
  2. 2.
    E.V. Kondratenko, J. Pérez-Ramírez, Appl. Catal. A 267, 181 (2004)CrossRefGoogle Scholar
  3. 3.
    M.F. Fellah, R.A. van Santen, I. Onal, J. Phys. Chem. C 113, 15307 (2009)CrossRefGoogle Scholar
  4. 4.
    I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Appl. Catal. A 319, 128 (2007)CrossRefGoogle Scholar
  5. 5.
    D. Ivanov, L.V. Piryutko, V.I. Sobolev, Pet. Chem. 44, 322 (2003)Google Scholar
  6. 6.
    H. Ehrich, W. Schwieger, K. Jähnisch, Appl. Catal. A 272, 311 (2004)CrossRefGoogle Scholar
  7. 7.
    V. Georgieva, R. Retoux, V. Ruaux, V. Valtchev, S. Mintova, Front. Chem. Sci. Eng. 12, 94 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Perez-Ramirez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Mihaylov, E. Ivanova, K. Chakarova, P. Novachka, K. Hadjiivanov, Appl. Catal. A 391, 3 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Schwidder, M. Santhosh Kumar, A. Brückner, W. Grünert, Chem. Commun. 0, 805 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. Sci. Eng. 50, 492 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Sun, H. Xia, E. Hensen, R. van Santen, C. Li, J. Catal. 238, 186 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Li, E.A. Pidko, R.A. van Santen, C. Li, E.J.M. Hensen, J. Phys. Chem. C 117, 413 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)CrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  18. 18.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  19. 19.
    G. Kresse, J. Hafner, J. Phys. Condens. Matter 6, 8245 (1994)CrossRefGoogle Scholar
  20. 20.
    C. Baerlocher, L.B. McCusker, Database of Zeolite Structures. https://asia.iza-structure.org/IZA-SC/framework.php?STC=MFI. Accessed 24 July 2018
  21. 21.
    Y. Jeanvoine, J.G. Ángyán, G. Kresse, J. Hafner, J. Phys. Chem. B 102, 5573 (1998)CrossRefGoogle Scholar
  22. 22.
    H.A. Aleksandrov, G.N. Vayssilov, N. Rösch, Stud. Surf. Sci. Catal. 158, 593 (2005)CrossRefGoogle Scholar
  23. 23.
    H.A. Aleksandrov, E.A.I. Shor, A.M. Shor, V.A. Nasluzov, G.N. Vayssilov, N. Rösch, Soft Matter. 10, 216 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Gurgul, K. Łatka, I. Hnat, J. Rynkowski, S. Dzwigaj, Microporous Mesoporous Mater. 168, 1 (2013)CrossRefGoogle Scholar
  25. 25.
    J.C. Aurora, E. Dolores, J.S. César, J.R.S. Francisco, Materials. 5, 121 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem. 21, 663 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Anpo, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H.H. Patterson, S. Webber, S. Ouellette, J. Phys. Chem. 98, 5744 (1994)CrossRefGoogle Scholar
  28. 28.
    M. Thommes, K. Kaneko, V. Neimark Alexander, P. Olivier James, F. Rodriguez-, J. Reinoso, S.W. Rouquerol, Sing, Kenneth, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  29. 29.
    P.V. Roxana, E. Inga, H. Heming, B. Ursula, S. Volker, G. Wolfgang, B. Angelika, J. Catal. 316, 103 (2014)CrossRefGoogle Scholar
  30. 30.
    S.H. Choi, B.R. Wood, J.A. Ryder, A.T. Bell, J. Phys. Chem. B 107, 11843 (2003)CrossRefGoogle Scholar
  31. 31.
    M. Ogura, K. Itabashi, J. Dedecek, T. Onkawa, Y. Shimada, K. Kawakami, K. Onodera, S. Nakamura, T. Okubo, J. Catal. 315, 1 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Mockovčiaková, Z. Orolínová, M. Matik, P. Hudec, E. Kmecová, Acta Montan. Slovaca Ročník 11, 353 (2006)Google Scholar
  33. 33.
    E. Tabor, G. Sádovská, M. Bernauer, P. Sazama, J. Nováková, V. Fíla, T. Kmječ, J. Kohout, K. Závěta, Z. Sobalík, Appl. Catal. A 240, 358 (2019)CrossRefGoogle Scholar
  34. 34.
    A. Heyden, B. Peters, A.T. Bell, F.J. Keil, J. Phys. Chem. B 109, 1857 (2005)CrossRefGoogle Scholar
  35. 35.
    P. Sazama, B. Wichterlová, E. Tábor, P. Štastný, N.K. Sathu, Z. Sobalík, J. Dědeček, Š Sklenák, P. Klein, A. Vondrová, J. Catal. 312, 123 (2014)CrossRefGoogle Scholar
  36. 36.
    L.K. Minsker, D.A. Bulushev, A. Renken, J. Catal. 219, 273 (2003)CrossRefGoogle Scholar
  37. 37.
    P. Boroń, L. Chmielarz, J. Gurgul, K. Łątka, B. Gil, B. Marszałek, S. Dzwigaj, Microporous Mesoporous Mater. 203, 73 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Xie, Z. Ma, T. Meng, C. Huang, C. Miao, Y. Yue, W. Hua, Z. Gao, J. Mol. Catal. A 409, 50 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Perez-Ramírez, F. Kapteijn, G. Mul, J.A. Moulijn, Chem. Commun. 693 (2001)Google Scholar
  40. 40.
    J.H. Park, J.H. Choung, I.S. Nam, S.W. Ham, Appl. Catal. B 78, 342 (2008)CrossRefGoogle Scholar
  41. 41.
    M.S. Kumar, M. Schwidder, W. Grünert, A. Brückner, J. Catal. 227, 384 (2004)CrossRefGoogle Scholar
  42. 42.
    I. Ellmers, R.P. Vélez, U. Bentrup, W. Schwieger, A. Brückner, W. Grünert, Catal. Today 258, 337 (2015)CrossRefGoogle Scholar
  43. 43.
    G.D. Pirngruber, M. Luechinger, P.K. Roy, A. Cecchetto, P. Smirniotis, J. Catal. 224, 429 (2004)CrossRefGoogle Scholar
  44. 44.
    L.D. Li, Q. Shen, J.J. Li, Z.P. Hao, Z.P. Xu, G.Q. Max, Lu, Appl. Catal. A 344, 131 (2008)CrossRefGoogle Scholar
  45. 45.
    G. Moretti, G. Fierro, G. Ferraris, G.B. Andreozzi, V. Naticchioni, J. Catal. 318, 1 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Buttha, S. Youngme, J. Wittayakun, S. Loiha, Mol. Catal. 461, 26 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nichapha Senamart
    • 1
  • Siriphorn Buttha
    • 1
  • Waenkaew Pantupho
    • 1
  • Iskra Z. Koleva
    • 2
  • Sirinuch Loiha
    • 1
    Email author
  • Hristiyan A. Aleksandrov
    • 2
    Email author
  • Jatuporn Wittayakun
    • 3
  • Georgi N. Vayssilov
    • 2
  1. 1.Materials Chemistry Research Center, Department of Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Faculty of Chemistry and PharmacyUniversity of SofiaSofiaBulgaria
  3. 3.School of Chemistry, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand

Personalised recommendations