Fabrication of ordered mesoporous carbons with tunable pore architecture by the cosolvent

  • Peng LiEmail author
  • Xiaoxiao Ma
  • Yanliang Zhao
  • Junhua Tan
  • Fei Liu
  • Kaijin Zhu


Ordered mesoporous carbons (OMCs) with tunable mesophase were prepared by a novel cosolvent method using low molecular resin as carbon precursor, and P123(Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide)triblock copolymers, EO20PO70EO20) as a template via an Evaporation-induced Self-assembly Process (EISA). The results show that the pore structure of OMCs could be oriented from 2D hexagonal (p6mm) to 2D centered rectangular (C2mm) structure. Two key descriptors of mesophase were identified. One is the ratio of PEO/PPO of triblock copolymer, and the other one is cosolvent, both of which would have effects on the interface of mesophase during the EISA process. Furthermore, it was confirmed that the ordered mesophase could be obtained in a very short time during the EISA process even accompanied by the microemulsion phenomenon.


Ordered mesoporous carbons Mesophase PEO/PPO Cosolvent strategy 



The research was supported by the financial support of the Shanxi Province Foundation for Youths (2015021072), the Program for the Innovative Talents of Taiyuan Institute of Technology (TITXD201403), Special Youth Science and Technology Innovation (QKCZ201635), National Training Programs of Innovation and Entrepreneurship for Undergraduates (201614101004), the Fund for Shanxi “1331 Project” Key Subjects Construction and greatly thanks Fund of Testing from Institute of High Energy and Physics for SAXS measurements assistance.


  1. 1.
    S. Abouali, M. Akbari Garakani, J.K. Kim, Electrochim. Acta 284, 436–443 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Deng, X. Yu, X. Qin, B. Liu, Y.B. He, B. Li, F. Kang, Energy Storage Mater. 11, 184–190 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Liang, S. Dai, J. Am. Chem. Soc. 128, 5316–5317 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Chen, Q. Li, N. Teng, D. Long, C. Ma, Y. Wei, J. Wang, L. Ling, Electrochim. Acta 214, 231–240 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Peng, F. Hu, J. Huang, Y. Wang, H. Dai, Z. Liu, Microp. Mesopor. Mater. 228, 196–206 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Liu, Z. Guo, H. Ling, Z. Huang, D. Tang, Microp. Mesopor. Mater. 227, 104–111 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Xu, Z. Wu, S. Tao, J. Mater. Chem. A 4, 16272–16287 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Liang, Z. Li, X. Yang, R. Fu, D. Wu, Chem. Commun. 49, 9998–10000 (2013)CrossRefGoogle Scholar
  9. 9.
    A.H. Lu, G.P. Hao, Q. Sun, X.Q. Zhang, W.C. Li, Macromol. Chem. Phys. 213, 1107–1131 (2012)CrossRefGoogle Scholar
  10. 10.
    Q. Shi, R. Zhang, Y. Lv, Y. Deng, A.A. Elzatahrya, D. Zhao, Carbon, 84, 335–346 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Liang, Z. Li, R. Fu, D. Wu, J. Mater. Chem. A 1, 3768–3773 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Barczak, K. Michalak-Zwierz, K. Gdula, K. Tyszczuk-Rotko, R. Dobrowolski, A. Dąbrowski, Microporous Mesoporous Mater. 211, 162–173 (2015)CrossRefGoogle Scholar
  13. 13.
    C. He, X. Hu, Ind. Eng. Chem. Res. 50, 14070–14083 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Zhang, L. Zheng, Y. Ma, L. Lei, Q. Li, Y. Li, H. Luo, H. Feng, Y. Hao, ACS. Appl. Mater. Interface 6, 2657–2665 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Enterría, J.L. Figueiredo, Carbon 108, 79–102 (2016)CrossRefGoogle Scholar
  16. 16.
    D. Zhang, M. Han, Y. Li, B. Wang, K. Wang, Y. Wang, T. Yang, J. He, H. Feng, J. Porous. Mater. 25, 29–35 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103, 7743–7747 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Sánchez-Sánchez, V. Fierro, M.T. Izquierdo, A. Celzard, J. Mater. Chem. A 4, 6140–6148 (2016)CrossRefGoogle Scholar
  19. 19.
    G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.-H. Park, A. Vinu, Angew. Chem. Int. Ed. 56, 8481–8485 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Tan, J. Tang, X. Zhou, D. Golberg, S.K. Bhatia, Y. Sugahara, Y. Yamauchi, Chem. Commun. 54, 9494–9497 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Li, Y. Song, Q. Lin, J. Shi, L. Liu, L. He, H. Ye, Q. Guo, Microp. Mesopor. Mater. 159, 81–86 (2012)CrossRefGoogle Scholar
  22. 22.
    P.W. Xiao, L. Zhao, Z.-Y. Sui, M.Y. Xu, B.-H. Han, Microp. Mesopor. Mater. 253, 215–222 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Wang, W. Wang, M. Asif, Y. Yu, Z. Wang, J. Wang, H. Liu, J. Xiao, Nanoscale 7, 15534–15541 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, K. Nakanishi, Chem. Mater. 28, 3944–3950 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Liu, H. Song, X. Chen, J. Mater. Chem. 21, 5345–5351 (2011)CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, F. Matsuoka, H.S. Suh, P.A. Beaucage, S. Xiong, D.M. Smilgies, K.W. Tan, J.G. Werner, P.F. Nealey, U.B. Wiesner, ACS Nano 12, 347–358 (2017)CrossRefGoogle Scholar
  27. 27.
    G. Deng, Y. Zhang, C. Ye, Z. Qiang, G.E. Stein, K.A. Cavicchi, B.D. Vogt, Chem. Commun. 50, 12684–12687 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Zhao, D.-L. Zhao, X.-Y. Han, H.-X. Yang, Y.-J. Duan, X.M. Tian, Electrochim. Acta 287, 21–28 (2018)CrossRefGoogle Scholar
  29. 29.
    T.Y. Ma, L. Liu, Z.Y. Yuan, Chem. Soc. Rev. 42, 3977–4003 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Science 341, 530–534 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Gorka, C. Fenning, M. Jaroniec, Colloids Surf. A 352, 113–117 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Choma, K. Jedynak, M. Marszewski, M. Jaroniec, Adsorption 19, 563–569 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Li, Y. Song, Z. Tang, G. Yang, Q. Guo, L. Liu, J. Yang, J. Colloid Interface Sci. 401, 161–163 (2013)CrossRefGoogle Scholar
  34. 34.
    D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G.D. Stucky, Chem. Mater. 11, 2668–2672 (1999)CrossRefGoogle Scholar
  35. 35.
    C.M. Yang, C.Y. Lin, Y. Sakamoto, W.C. Huang, L.L. Chang, Chem. Commun. 45, 5969–5971 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringTaiyuan Institute of TechnologyTaiyuanChina
  2. 2.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations