Advertisement

TiO2-pillared magadiite and its arsenic adsorption capacity

  • Sarah Louise S. Atulba
  • Jeong Hun Jang
  • Man ParkEmail author
Article
  • 13 Downloads

Abstract

The structural and chemical interactions of magadiite with TiO2 pillars were examined along with arsenic adsorption potential of TiO2-pillared magadiite. The interlayer space of magadiite accommodated TiO2 in the form of moieties rather than discrete particles, which led to a slight increase in interlayer distance and consequently a remarkable formation of micropores (a specific surface area of 270 m2/g). High thermal stability up to 800 °C and increased interlayer space were attributed to the formation of Ti–O–Si bonding (966 cm−1) between interlayered silanol groups and TiO2 pillars. TiO2-pillared magadiite removed up to 100% of As(V) from aqueous solution at the initial concentrations of 0.5–1.0 mg L−1. These unique structural and textural evolutions of magadiite upon pillaring with TiO2 provide new insights to understand the pillaring behaviors of hydrated layered polysilicates and to fabricate pillared materials applicable to arsenate adsorption.

Keywords

Pillaring behavior Magadiite Titanium dioxide Arsenate adsorption 

Notes

Acknowledgements

This study was supported by Kyungpook National University in Korea.

Funding

The funding was provided by Kyungpook National University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    A.-M. Georgescu, F. Nardou, V. Zichil, I.D. Nistor, Appl. Clay Sci. 152, 44–50 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Li, J.R. Liu, S.Y. Jia, J.W. Guo, J. Zhuo, P. Na, Chem. Eng. J. 191, 66–74 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Mnasri Ghnimi, N. Frini-Srasra, Appl. Clay Sci. 158, 150–157 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Sirinakorn, K. Imwiset, S. Bureekaew, M. Ogawa, Appl. Clay Sci. 153, 187–197 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Vellayan, B. González, R. Trujillano, M.A. Vicente, A. Gil, Appl. Clay Sci. 160, 126–131 (2018)CrossRefGoogle Scholar
  6. 6.
    B. Aicha, S. Mohamed, M.-B. Jocelyne, L. Benedicte, B. Jean-Luc, B. Abdelkader, J. Porous Mater. 25, 801–812 (2018)Google Scholar
  7. 7.
    K.-W. Park, J.H. Jung, H.-J. Seo, O.-Y. Kwon, Microporous Mesoporous Mater. 121, 219–225 (2009)CrossRefGoogle Scholar
  8. 8.
    K. Sahel, M. Bouhent, F. Belkhadem, M. Ferchichi, F. Dappozze, C. Guillard, F. Figueras, Appl. Clay Sci. 95, 205–210 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Corma, M. Navarro, J.P. Pariente, J. Chem. Soc. Chem. Commun. 147–148 (1994)Google Scholar
  10. 10.
    S.-Y. Kim, H.-J. Ban, W.-S. Ahn, Catal. Lett. 113, 160–164 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, J.M. Thomas, Phys. Chem. Chem. Phys. 1, 585–592 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Kim, S. Kim, Y. Uh, Y. Kim, Layered silicate catalysts pillared with metal oxide, US Patent 2004Google Scholar
  13. 13.
    M.E. Landis, B. Aufdembrink, P. Chu, I. Johnson, G. Kirker, M. Rubin, J. Am. Chem. Soc. 113, 3189–3190 (1991)CrossRefGoogle Scholar
  14. 14.
    N. Tsunoji, S. Yuki, Y. Oumi, M. Sekikawa, Y. Sasaki, M. Sadakane, T. Sano, ACS Appl. Mater. Interfaces 7, 24360–24369 (2015)CrossRefGoogle Scholar
  15. 15.
    K.G. Bhattacharyya, S.S. Gupta, Colloids Surf. Physicochem. Eng. Aspects 317, 71–79 (2008)CrossRefGoogle Scholar
  16. 16.
    K.G. Bhattacharyya, S.S. Gupta, Adv. Colloid Interface Sci. 140, 114–131 (2008)CrossRefGoogle Scholar
  17. 17.
    J. Kloprogge, J. Porous Mater. 5, 5–41 (1998)CrossRefGoogle Scholar
  18. 18.
    Z. Ding, J.T. Kloprogge, R.L. Frost, G. Lu, H. Zhu, J. Porous Mater. 8, 273–293 (2001)CrossRefGoogle Scholar
  19. 19.
    H.P. Eugster, Science 157, 1177–1180 (1967)CrossRefGoogle Scholar
  20. 20.
    J.M. Garces, S.C. Rocke, C.E. Crowder, D.L. Hasha, Clays Clay Miner. 36, 409–418 (1988)CrossRefGoogle Scholar
  21. 21.
    G. Lagaly, K. Beneke, Am. Mineral. 60, 642–649 (1975)Google Scholar
  22. 22.
    U. Brenn, H. Ernst, D. Freude, R. Herrmann, R. Jähnig, H.G. Karge, J. Kärger, T. König, B. Mädler, U.-T. Pingel, Microporous Mesoporous Mater. 40, 43–52 (2000)CrossRefGoogle Scholar
  23. 23.
    Y.-R. Wang, S.-F. Wang, L.-C. Chang, Appl. Clay Sci. 33, 73–77 (2006)CrossRefGoogle Scholar
  24. 24.
    N. Takahashi, K. Kuroda, J. Mater. Chem. 21, 14336 (2011)CrossRefGoogle Scholar
  25. 25.
    T. Selvam, A. Inayat, W. Schwieger, Dalton Trans. 43, 10365–10387 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Ogawa, K. Saito, M. Sohmiya, Dalton Trans. 43, 10340–10354 (2014)CrossRefGoogle Scholar
  27. 27.
    S.J. Kim, E.J. Kim, T.B. Kang, K.-D. Jung, O.-S. Joo, C.-H. Shin, J. Porous Mater. 13, 27–35 (2006)CrossRefGoogle Scholar
  28. 28.
    R. Sprung, M.E. Davis, J.S. Kauffman, C. Dybowski, Ind. Eng. Chem. Res. 29, 213–220 (1990)CrossRefGoogle Scholar
  29. 29.
    J.S. Dailey, T.J. Pinnavaia, Chem. Mater. 4, 855–863 (1992)CrossRefGoogle Scholar
  30. 30.
    S.T. Wong, S. Cheng, Chem. Mater. 5, 770–777 (1993)CrossRefGoogle Scholar
  31. 31.
    K. Kosuge, P.S. Singh, Chem. Mater. 12, 421–427 (2000)CrossRefGoogle Scholar
  32. 32.
    J.M. Rojo, E. Ruiz-Hitzky, J. Sanz, Inorg. Chem. 27, 2785–2790 (1988)CrossRefGoogle Scholar
  33. 33.
    C. Eypert-Blaison, E. Sauzéat, M. Pelletier, L.J. Michot, F. Villiéras, B. Humbert, Chem. Mater. 13, 1480–1486 (2001)CrossRefGoogle Scholar
  34. 34.
    Y. Huang, Z. Jiang, W. Schwieger, Chem. Mater. 11, 1210–1217 (1999)CrossRefGoogle Scholar
  35. 35.
    A.N. Lazarev, Vibrational Spectra and Structure of Silicates (Consultants Bureau, New York, 1972)Google Scholar
  36. 36.
    F. Kooli, L. Mianhui, S.F. Alshahateet, F. Chen, Z. Yinghuai, J. Phys. Chem. Solids 67, 926–931 (2006)CrossRefGoogle Scholar
  37. 37.
    F. Kooli, L. Yan, J. Phys. Chem. C 113, 1947–1952 (2009)CrossRefGoogle Scholar
  38. 38.
    Y. Bi, J.-F. Lambert, Y. Millot, S. Casale, J. Blanchard, S. Zeng, H. Nie, D. Li, J. Mater. Chem. 21, 18403–18411 (2011)CrossRefGoogle Scholar
  39. 39.
    C. Eypert-Blaison, B. Humbert, L.J. Michot, M. Pelletier, E. Sauzéat, F. Villiéras, Chem. Mater. 13, 4439–4446 (2001)CrossRefGoogle Scholar
  40. 40.
    W. Lim, J.-H. Jang, N.-Y. Park, S.-M. Paek, W.-C. Kim, M. Park, J. Mater. Chem. A 5, 4144–4149 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Jezequel, K. Chu, J. Environ. Sci. Health Part A 41, 1519–1528 (2006)CrossRefGoogle Scholar
  42. 42.
    P. Na, X. Jia, B. Yuan, Y. Li, J. Na, Y. Chen, L. Wang, J. Chem. Technol. Biotechnol. 85, 708–714 (2010)CrossRefGoogle Scholar
  43. 43.
    M.E. Pena, G.P. Korfiatis, M. Patel, L. Lippincott, X. Meng, Water Res. 39, 2327–2337 (2005)CrossRefGoogle Scholar
  44. 44.
    J.M.d.S. de Silva, G. Paul, J. Bendall, C. Bisio, L. Marchese, H.O. Pastore, Phys. Chem. Chem. Phys. 15, 13434–13445 (2013)CrossRefGoogle Scholar
  45. 45.
    H.M. Moura, F.A. Bonk, H.O. Pastore, Eur. J. Mineral. 24, 903–912 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Boccuti, K. Rao, A. Zecchina, G. Leofanti, G. Petrini, C. Morterra, A. Zecchina, G. Costa, Stud. Surf. Sci. Catal. 48, 133 (1989)CrossRefGoogle Scholar
  47. 47.
    D. Huybrechts, I. Vaesen, H. Li, P. Jacobs, Catal. Lett. 8, 237–244 (1991)CrossRefGoogle Scholar
  48. 48.
    D. Scarano, A. Zecchina, S. Bordiga, F. Geobaldo, G. Spoto, G. Petrini, G. Leofanti, M. Padovan, G. Tozzola, J. Chem. Soc. Faraday Trans. 89, 4123–4130 (1993)CrossRefGoogle Scholar
  49. 49.
    A.J. de Man, J. Sauer, J. Phys. Chem. 100, 5025–5034 (1996)CrossRefGoogle Scholar
  50. 50.
    M. Camblor, A. Corma, J. Perez-Pariente, J. Chem. Soc. Chem. Commun. 557–559 (1993)Google Scholar
  51. 51.
    G. Deo, A.M. Turek, I.E. Wachs, D.R. Huybrechts, P. Jacobs, Zeolites 13, 365–373 (1993)CrossRefGoogle Scholar
  52. 52.
    E. Dvininov, E. Popovici, R. Pode, L. Cocheci, P. Barvinschi, V. Nica, J. Hazard. Mater. 167, 1050–1056 (2009)CrossRefGoogle Scholar
  53. 53.
    S. Kumar, N. Verma, M. Singla, Dig. J. Nanomater. Biostruct. 7, 607–619 (2012)Google Scholar
  54. 54.
    F. Geobaldo, S. Bordiga, A. Zecchina, E. Giamello, G. Leofanti, G. Petrini, Catal. Lett. 16, 109–115 (1992)CrossRefGoogle Scholar
  55. 55.
    S. Bordiga, S. Coluccia, C. Lamberti, L. Marchese, A. Zecchina, F. Boscherini, F. Buffa, F. Genoni, G. Leofanti, J. Phys. Chem. 98, 4125–4132 (1994)CrossRefGoogle Scholar
  56. 56.
    G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spano, F. Rivetti, A. Zecchina, J. Am. Chem. Soc. 123, 11409–11419 (2001)CrossRefGoogle Scholar
  57. 57.
    S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62, 1723–1732 (1940)CrossRefGoogle Scholar
  58. 58.
    N. Takeno, Geological survey of Japan open file report. 419 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sarah Louise S. Atulba
    • 1
  • Jeong Hun Jang
    • 1
  • Man Park
    • 1
    Email author
  1. 1.School of Applied BioscienceKyungpook National UniversityDaeguSouth Korea

Personalised recommendations