Advertisement

Mo based electrocatalyst with N, P co-doped mesoporous carbon as matrix for overall water splitting H2 production

  • Kaili An
  • Xiaoli Cui
  • Xinxin Xu
  • Yi Wang
Article
  • 21 Downloads

Abstract

In an attempt to explore high efficient and low cost electrocatalyst in H2 evolution reaction (HER), Mo2C nanoparticles with the size about 8 to 10 nm are loaded on N, P co-doped mesoporous carbon matrix successfully with Na2MoO4 and carbonated beverage as precursors. The obtained electrocatalyst, Mo2C@NPC, possesses small dimension with the size about 200 to 300 nm. Mo2C@NPC exhibits very excellent HER activity. It exhibits excellent electrocatalytic performance in basic condition, with overpotential 60 mV and Tafel slope 63 mV dec−1 to get 10 mA cm−2 current density for H2 evolution reaction (HER). To realize overall H2O splitting, Co was doped into Mo2C@NPC and a new electrocatalyst, named as Co/Mo2C@NPC was obtained. Co/Mo2C@NPC shows outstanding oxygen evolution reaction (OER) performance. Under same condition, to get current with density of 10 mA cm−2, Co/Mo2C@NPC merely need 360 mV. The electrocatalyst also possesses excellent durability, after 1000 cycles as well as 10 h long-term HER and OER tests, the current keeps stable. To achieve overall H2O splitting, an electrolyzer is constructed with Mo2C@NPC and Co/Mo2C@NPC as cathode and anode. To get a current with density 10 mA cm−2, it only needs a voltage of 1.60 V. We expect Mo2C@NPC and Co/Mo2C@NPC electrocatalyst can act as a new material for overall H2O splitting.

Keywords

Mo based electrocatalyst Heteroatom doping Mesoporous carbon HER Overall water splitting 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation (21303010) and Fundamental Research Funds for the Central University (N170504025).

Supplementary material

10934_2018_703_MOESM1_ESM.docx (403 kb)
Supplementary material 1 (DOCX 402 KB)

References

  1. 1.
    C. Du, H. Huang, Y. Wu, S.Y. Wu, W.B. Song, Nanoscale 8, 16251 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    G. Darabdhara, M.R. Das, M.A. Amin, G.A.M. Mersal, N.Y. Mostafa, S.S.A. El-Rehim, S. Szunerits, R. Boukherroub, Int J Hydrogen Energy 43, 1424 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Liu, J.B. Zhou, Y. Xiao, L. Yang, D.R. Yang, D.L. Zhou, Int J Hydrogen Energy 42, 29781 (2017)CrossRefGoogle Scholar
  4. 4.
    W.W. Cai, X.Y. Luo, Y. Jiang, Z. Liu, J. Li, L. Ma, J. Xiong, Z.H. Yang, H.S. Cheng, Int J Hydrogen Energy 43, 2026, (2018)CrossRefGoogle Scholar
  5. 5.
    X.S. Guo, J. Liang, L. Wang, Z.J. Feng, T.T. Yu, Z.H. Zhang, Y.L. Shao, C.C. Hao, G.C. Li, Int J Hydrogen Energy 43, 2034, (2018)CrossRefGoogle Scholar
  6. 6.
    L.L. Zhang, Y.L. Guo, A. Iqbal, B. Li, D. Gong, W. Liu, K. Iqbal, W.S. Liu, W.W. Qin, Int J Hydrogen Energy 43, 1251 (2018)CrossRefGoogle Scholar
  7. 7.
    X.J. Bian, M.D. Scanlon, S. Wang, L. Liao, Y. Tang, B.H. Liu, H.H. Girault, Chem. Sci. 4, 3432 (2013)CrossRefGoogle Scholar
  8. 8.
    M.C. Weidman, D.V. Esposito, Y.C. Hsu, J.G. Chen, J Power Sources 202, 11 (2012)CrossRefGoogle Scholar
  9. 9.
    W.F. Chen, C.H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J.T. Muckerman, Y. Zhub, R.R. Adzica, Energy Environ. Sci. 6, 943 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Tuomi, R. Guil-Lopez, T. Kallio, J. Catal. 334, 102 (2016)CrossRefGoogle Scholar
  11. 11.
    T.G. Kelly, K.X. Lee, J.G. Chen, J Power Sources 271, 76 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Liao, S. Wang, J.J. Xiao, X.J. Bian, Y.H. Zhang, M.D. Scanlon, X.L. Hu, Y. Tang, B.H. Liu, H.H. Girault, Energy Environ. Sci. 7, 387 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Liao, X.J. Bian, J.J. Xiao, B.H. Liu, M.D. Scanlonb, H.H. Girault, Phys. Chem. Chem. Phys. 16, 10088 (2014)CrossRefPubMedGoogle Scholar
  14. 14.
    P. Xiao, Y. Yan, X. Ge, Z.L. Liu, J.Y. Wang, X. Wang, Appl. Catal. B 154, 232 (2014)CrossRefGoogle Scholar
  15. 15.
    N.S. Alhajri, D.H. Anjum, K. Takanabe, J. Mater. Chem. A 2, 10548 (2014)CrossRefGoogle Scholar
  16. 16.
    C.Y. Tang, A. Sun, Y. Xu, Z.Z. Wu, D.Z. Wang, J Power Sources 296, 18 (2015)CrossRefGoogle Scholar
  17. 17.
    L.L. Huo, B.C. Liu, G. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 8, 18107 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    L.F. Pan, Y.L. Hang, S. Yang, P.F. Liu, M.Q. Yu, H.G. Yang, Chem. Commun. 50, 13135 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Šljukić, M. Vujković, L. Amaral, D.M.F. Santos, R.P. Rocha, C.A.C. Sequeira, J.L. Figueiredoc, J. Mater. Chem. A 3, 15505 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Fan, H. Chen, Y.Y. Wu, L.L. Feng, Y.P. Liu, G.D. Li, X.X. Zou, J. Mater. Chem. A 3, 16320 (2015)CrossRefGoogle Scholar
  21. 21.
    J.S. Li, Y.J. Tang, C.H. Liu, S.L. Li, R.H. Li, L.Z. Dong, Z.H. Dai, J.C. Bao, Y.Q. Lan, J. Mater. Chem. A 4, 1202 (2016)CrossRefGoogle Scholar
  22. 22.
    C.Y. He, J.Z. Tao, G.Q. He, P.K. Shen, Y.F. Qiu, Catal. Sci. Technol. 6, 7316 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Qamar, A. Adam, B. Merzougui, A. Helal, O. Abdulhamida, M.N. Siddiqui, J. Mater. Chem. A 4, 16225 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.P. Liu, G.T. Yu, G.D. Li, Y.H. Sun, T. Asefa, W. Chen, X.X. Zou, Angew. Chem. Int. Ed. 54, 10752 (2015)CrossRefGoogle Scholar
  25. 25.
    D.H. Youn, S. Han, J.Y. Kim, J.Y. Kim, H. Park, S.H. Choi, J.S. Lee, ACS Nano 8, 5164 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    F.K. Yang, K. Sliozberg, H. Antoni, W. Xia, M. Muhler, Electroanalysis 28, 2293 (2016)CrossRefGoogle Scholar
  27. 27.
    Z.H. Pu, M. Wang, Z.K. Kou, I.S. Amiinu, S. Mu, Chem. Commun. 52, 12753 (2016)CrossRefGoogle Scholar
  28. 28.
    W.F. Chen, S. Iyer, S. Iyer, K. Sasaki, C.H. Wang, Y.M. Zhu, J.T. Muckerman, E. Fujita, Energy Environ. Sci. 6, 1818 (2013)CrossRefGoogle Scholar
  29. 29.
    W. Cui, N.Y. Cheng, Q. Liu, C.J. Ge, A.M. Asiri, X.P. Sun, ACS Catal. 4, 2658 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.P. Mu, Y. Zhang, L. Fang, L. Liu, H.J. Zhang, Y. Wang, Electrochim. Acta 215, 357 (2016)CrossRefGoogle Scholar
  31. 31.
    K.L. An, X.X. Xu, X.X. Liu, ACS Sustain. Chem. Eng. 6, 1446 (2018)CrossRefGoogle Scholar
  32. 32.
    M.Q. Yao, N. Wang, W.C. Hu, S. Komarneni, Appl. Catal. B 233, 226 (2018)CrossRefGoogle Scholar
  33. 33.
    K. Zhang, Y. Zhao, D.Y. Fu, Y.J. Chen, J. Mater. Chem. A 3, 5783 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Zhang, Y. Zhao, S. Zhang, H.L. Yu, Y.J. Chen, P. Gao, C.L. Zhu, J. Mater. Chem. A 2, 18715 (2014)CrossRefGoogle Scholar
  35. 35.
    N. Wang, M.Q. Yao, P. Zhao, W.C. Hu, S. Komarneni, J. Mater. Chem. A 5, 5838 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Lu, H.X. Ang, Q.Y. Yan, E. Fong, Chem. Mater. 28, 5743 (2016)CrossRefGoogle Scholar
  37. 37.
    X.J. Yang, X.J. Feng, H.Q. Tan, H.Y. Zang, X.L. Wang, Y.H. Wang, E.B. Wang, Y.G. Li, J. Mater. Chem. A 4, 3947 (2016)CrossRefGoogle Scholar
  38. 38.
    P.F. Zhang, Z.Y. Zhang, J.H. Chen, S. Dai, Carbon 93, 39 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Wang, B.L. Sun, P. Zhao, M.Q. Yao, W.C. Hu, S. Komarneni, Chem. Eng. J. 345, 31 (2018)CrossRefGoogle Scholar
  40. 40.
    K. Xiong, L. Li, L. Zhang, W. Ding, L.S. Peng, Y. Wang, S. Chen, S.Y. Tan, Z.D. Wei, J. Mater. Chem. A 3, 1863 (2015)CrossRefGoogle Scholar
  41. 41.
    W.J. Qian, F.X. Sun, Y.H. Xu, L.H. Qiu, C.H. Liu, S.D. Wang, F. Yan, Energy Environ. Sci. 7, 379 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Biswal, A. Banerjee, M. Deo, S. Ogale. Energy Environ. Sci. 6, 1249 (2013)CrossRefGoogle Scholar
  43. 43.
    Z.X. Li, K.Y. Zou, X. Zhang, T. Han, Y. Yang, Inorg. Chem. 55, 6552 (2016)CrossRefPubMedGoogle Scholar
  44. 44.
    C.Y. Tang, W. Wang, A. Sun, C.K. Qi, D.Z. Zhang, Z.Z. Wu, D.Z. Wang, ACS Catal. 5, 6956 (2015)CrossRefGoogle Scholar
  45. 45.
    Y.Y. Chen, Y. Zhang, W.J. Jiang, X. Zhang, Z.H. Dai, L.J. Wan, J.S. Hu, ACS Nano 10, 8851 (2016)CrossRefPubMedGoogle Scholar
  46. 46.
    Z.Y. Wu, B.C. Hu, P. Wu, H.W. Liang, Z.L. Yu, Y. Lin, Y.R. Zheng, Z.Y. Li, S.H. Yu, NPG Asia. Mater. 8, 288 (2016)CrossRefGoogle Scholar
  47. 47.
    Y.C. Zhou, Y.H. Leng, W.J. Zhou, J.L. Huang, M.W. Zhao, J. Zhan, C.H. Feng, Z.H. Tang, S.W. Chen, H. Liu, Nano Energy 16, 357 (2015)CrossRefGoogle Scholar
  48. 48.
    Z.H. Pu, S.Y. Wei, Z.B. Chen, S.C. Mu, Appl. Catal. B 196, 193 (2016)CrossRefGoogle Scholar
  49. 49.
    H.L. Lin, N. Liu, Z.P. Shi, Y.L. Guo, Y. Tang, Q.S. Gao, Adv. Funct. Mater. 26, 5590 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations