Ceria coated hexagonal mesoporous silica core–shell composite particle abrasives for improved chemical–mechanical planarization performance

  • Ailian Chen
  • Wanying Wang
  • Xiangyu Ma
  • Yang ChenEmail author


The structure design of abrasive particles provides an available approach for improving both surface roughness and polishing efficiency in chemical–mechanical planarization/polishing (CMP) applications. In this work, the hexagonal mesoporous silica (H-mSiO2) particles with parallel channels were prepared via a modified tyltrimethylammonium bromide-assisted template method. And the ceria nanoparticles attached to H-mSiO2 was achieved by a solution synthesis technique. The core–shell structure of the as-prepared H-mSiO2–CeO2 composites was characterized in terms of X-ray diffraction, field emission scanning electron microscope, high-resolution transmission electron microscope, nitrogen adsorption/desorption measurement, and STEM–EDX mapping techniques. The oxide–CMP performance of the H-mSiO2–CeO2 composite particles as abrasives was evaluated in terms of surface finish and material removal rate. For comparison, the commercial ceria abrasives and solid silica (sSiO2)–CeO2 composite particles with non-porous sSiO2 cores were also tested under the same CMP conditions. Oxide–CMP results revealed that the H-mSiO2–CeO2 composite abrasives contributed to the finish reduction, efficiency improvement, and scratch elimination with respect to conventional ceria abrasives. By comparing with rigid solid silica (sSiO2)–CeO2 particles, the non-rigid H-mSiO2–CeO2 composites revealed a reduced surface roughness (0.17 nm vs. 0.33 nm, root-mean-square values), a low topographical variation (± 0.4 nm vs. ± 0.8 nm), and an improved removal rate (203 nm/min vs. 144 nm/min). The improved CMP performance might be attributed to the enhanced overall elastic response and reduced particle density, resulting from their hexagonal meso-silica cores with abundant parallel channels. Moreover, the increased Ce3+ concentration also contributed the improvement of polishing efficiency. This work describes an effort to explore the relationship between the meso-silica structure and finishing performance of the ceria-based core–shell abrasives for optimizing oxide–CMP characteristics.


Composite particle Core–shell structure Ceria Hexagonal meso-silica Chemical–mechanical planarization 



The Project is supported by National Natural Science Foundation of China (Grant Nos. 51405038, 51575058, 51875052), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    C. Sun, H. Li, L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Janoš, J. Ederer, V. Pilařová, J. Henych, J. Tolasz, D. Milde, T. Opletal, Chemical mechanical glass polishing with cerium oxide: effect of selected physico-chemical characteristics on polishing efficiency. Wear 362–363, 114–120 (2016)CrossRefGoogle Scholar
  3. 3.
    D.C. Grinter, C. Muryn, A. Sala, C. Yim, C.L. Pang, T.O. Menteş, A. Locatelli, G. Thornton, Spillover reoxidation of ceria nanoparticles. J. Phys. Chem. C 120, 11037–11044 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Sudarsanam, B. Hillary, M.H. Amin, N. Rockstroh, U. Bentrup, A. Brückner, S.K. Bhargava, Heterostructured copper–ceria and iron–ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion. Langmuir 34, 2663–2673 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Bhalkikar, T. Wu, C.M. Marin, T.J. Fisher, M. Wang, I.H. Wells, A. Sarella, Y. Soo, C.L. Cheung, Ozone-mediated synthesis of ceria nanoparticles. Nanoscale 10, 9822–9829 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, Z.F. Li, J.W. Qin, A.L. Chen, Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance. J. Mater. Sci. 51, 5811–5822 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Ryu, W. Kim, J. Yun, K. Lee, J. Lee, H. Yu, J.H. Kim, J.J. Kim, J. Jang, Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization. ACS Appl. Mater. Interfaces 10, 11843–11851 (2018)CrossRefGoogle Scholar
  8. 8.
    B.V.S. Praveen, B. Cho, J. Park, S. Ramanathan, Effect of lanthanum doping in ceria abrasives on chemical mechanical polishing selectivity for shallow trench isolation. Mater. Sci. Semicond. Process. 33, 161–168 (2015)Google Scholar
  9. 9.
    C. Zhou, D.C. Zhu, Preparation and chemical mechanical polishing performance of CeO2/CeF3 composite powders. Micro–Nano Lett. 13, 117–121 (2018)CrossRefGoogle Scholar
  10. 10.
    G.S. Pan, Z.H. Gu, Y. Zhou, T. Li, H. Gong, Y. Liu, Preparation of silane modified SiO2 abrasive particles and their Chemical Mechanical Polishing (CMP) performances. Wear 273, 100–104 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, J.X. Lu, Z.G. Chen, Preparation, characterization and oxide CMP performance of composite polystyrene–core ceria–shell abrasives. Microelectron. Eng. 88, 200–205 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, Z.N. Li, N.M. Miao, Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance. Tribol. Int. 82, 211–217 (2015)CrossRefGoogle Scholar
  13. 13.
    A.L. Chen, Y. Chen, Y.Y. Wang, J.W. Qin, Silica abrasives containing solid cores and mesoporous shells: synthesis, characterization and polishing behavior for SiO2 film. J. Alloy Compd 663, 60–67 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Murata, K. Yodogawa, K. Ban, Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles. Int. J. Mach. Tools Manuf. 114, 1–7 (2017)CrossRefGoogle Scholar
  15. 15.
    X.B. Zhao, R.W. Long, Y. Chen, Z.G. Chen, Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior. Microelectron. Eng. 87, 1716–1720 (2010)CrossRefGoogle Scholar
  16. 16.
    Z.F. Zhang, W.L. Liu, J.K. Zhu, Z.T. Song, Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate. Appl. Surf. Sci. 257, 1750–1755 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Peedikakkandy, L. Kalita, P. Kavle, A. Kadam, V. Gujar, M. Arcot, P. Bhargava, Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application. Appl. Surf. Sci. 357, 1306–1312 (2015)CrossRefGoogle Scholar
  18. 18.
    E.R. Borujeny, K. Dawkins, P. Li, Z. Xu, K. Cadien, Ceria coated silica particles: one step preparation and settling behaviour under the influence of colloidal and hydrodynamic interactions. Mater. Chem. Phys. 173, 467–474 (2016)CrossRefGoogle Scholar
  19. 19.
    X.C. Chen, Y.W. Zhao, Y.G. Wang, Modeling the effects of particle deformation in chemical mechanical polishing. Appl. Surf. Sci. 258, 8469–8474 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, Z.N. Li, N.M. Miao, Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization. Appl. Surf. Sci. 314, 180–187 (2014)CrossRefGoogle Scholar
  21. 21.
    D.F. Liu, G.L. Chen, Q. Hu, Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles. Int. J. Mach. Tools Manuf. 88, 3515–3525 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Chen, X. Wang, F. Giuliani, A. Atkinson, Microstructural characteristics and elastic modulus of porous solids. Acta Mater. 89, 268–277 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Muñoz, S.M. Castillo, Y. Torres, Different models for simulation of mechanical behaviour of porous materials. J. Mech. Behav. Biomed. 80, 88–96 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Chen, C.Z. Zuo, Z.F. Li, A.L. Chen, Design of ceria grafted mesoporous silica composite particles for high-efficiency and damage-free oxide chemical mechanical polishing. J. Alloys Compd 736, 276–288 (2018)CrossRefGoogle Scholar
  25. 25.
    D. Jauffrès, C. Yacou, M. Verdier, A.A. Dendievel, Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling. Microporous Mesoporous Mater. 140, 120–129 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Luo, Y. Liang, E. Erichsen, R. Anwander, Monodisperse mesoporous silica nanoparticles of distinct topology. J. Colloid Interface Sci. 495, 84–93 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  28. 28.
    R. Biswas, P. Khan, S. Mukherjee, A. Mukhopadhyay, J. Ghosh, K. Muraleedharan, Study of short range structure of amorphous silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J. Non-cryst Solids 488, 1–9 (2018)CrossRefGoogle Scholar
  29. 29.
    L. García-Uriostegui, H. Meléndez-Ortiz, G. Toriz, E. Delgado, Post-grafting and characterization of mesoporous silica MCM-41 with a thermoresponsive polymer TEVS/NIPAAm/β-cyclodextrin. Mater. Lett. 196, 26–29 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Wang, Y. Zhang, W. Luo, A.A. Elzatahry, X. Cheng, A. Alghamdi, A.M. Abdullah, Y. Deng, D.Y. Zhao, Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method. Chem. Mater. 28, 2356–2362 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Miao, D. Li, Y. Zhang, J. Yu, R. Xu, AIE luminogen functionalized mesoporous silica nanoparticles as efficient fluorescent sensor for explosives detection in water. Microporous Mesoporous Mater. 196, 46–50 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Zhong, Y. Zhou, M. He, Y. Tong, L. Fan, Z. Cai, Synthesis of organosiloxane-coated SiO2/CeO2 with multilayered hierarchical structure and its application in optical diffusers. J. Mater. Sci. 52, 12806–12817 (2017)CrossRefGoogle Scholar
  33. 33.
    E. Swatsitang, S. Phokha, S. Hunpratub, S. Maensiri, Characterization of Sm-doped CeO2 nanoparticles and their magnetic properties. Physica B 485, 14–20 (2016)CrossRefGoogle Scholar
  34. 34.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn (Addison-Wesley, Reading, 1978)Google Scholar
  35. 35.
    M. Lin, H. Tan, P. Tan, C. Boothroyd, T. Hansen, Y. Foo, Experimental evidence for self-assembly of CeO2 particles in solution: formation of single-crystalline porous CeO2 nanocrystals. J. Phys. Chem. C 116, 242–247 (2012)Google Scholar
  36. 36.
    L. Cook, Chemical processes in glass polishing. J. Non-cryst. Solids 120, 152–171 (1990)CrossRefGoogle Scholar
  37. 37.
    M.S. Miller, M.A. Ferrato, A. Niec, M.C. Biesinger, T.B. Carmichael, Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience. Langmuir 30, 14171–14178 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Zhao, L. Chang, A micro-contact and wear model for chemical–mechanical polishing of silicon wafers. Wear 252, 220–226 (2002)CrossRefGoogle Scholar
  39. 39.
    Z. Lin, R. Wang, Abrasive removal depth for polishing a sapphire wafer by a cross-patterned polishing pad with different abrasive particle sizes. Int. J. Adv. Manuf. Technol. 74, 25–36 (2014)CrossRefGoogle Scholar
  40. 40.
    Z. Lin, R. Wang, S. Ma, Theoretical model and experimental analysis of chemical mechanical polishing with the effect of slurry for abrasive removal depth and surface morphology of silicon wafer. Tribol. Int. 117, 119–130 (2018)CrossRefGoogle Scholar
  41. 41.
    Y.Q. Qi, L. Chen, S.L. Jiang, J.X. Yu, B.J. Yu, C. Xiao, L.M. Qian, Investigation of silicon wear against non-porous and micro-porous SiO2 spheres in water and in humid air. RSC Adv. 6, 89627–89634 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. Chen, C. Qian, N.M. Miao, Atomic force microscopy indentation to determine mechanical property for polystyrene–silica core–shell hybrid particles with controlled shell thickness. Thin Solid Films 579, 57–63 (2015)CrossRefGoogle Scholar
  43. 43.
    S. Deshpande, S. Patil, S.V.N.T. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005)CrossRefGoogle Scholar
  44. 44.
    A.L. Chen, J.L. Long, Z.F. Li, Y. Chen, Dependency of structural change and polishing efficiency of meso-silica/ceria core/shell composite abrasives on calcination temperatures. J. Mater. Sci. Mater. Electron. 29, 11466–11477 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ailian Chen
    • 1
    • 2
  • Wanying Wang
    • 3
  • Xiangyu Ma
    • 3
  • Yang Chen
    • 3
    Email author
  1. 1.School of Mechanical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Green Process EquipmentChangzhou UniversityChangzhouPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations