Dual-template synthesis of cage-like Ni-based catalyst for hydrotreatment of bio-oil

  • Jianli Tao
  • Lujuan Liu
  • Peihong Zhu
  • Kang Zhai
  • Qian Ma
  • Danning Zhang
  • Jie Ma
  • Yunpu ZhaiEmail author
  • Yonggang Liu
  • Ruiqin Zhang


A Ni-based cage-like C–SiO2–Al2O3 (Ni/CL-CSA) catalyst was synthesized successfully via a facile dual-templating method and used for the hydrotreatment of phenol. The catalyst was characterized by SEM, TEM, XRD, TG and N2 adsorption techniques. Results show that Ni/CL-CSA has three-dimensional connected macroporous structure with pore size of about 100 nm and ordered mesoporous windows with average pore size of approximately 3.8 nm. Size of nickel particle is 6.1 nm. BET surface area of the catalyst is 212 m2/g and pore volume is 0.24 cm3/g. Hydrogenation and the stability performance of the catalyst was studied for bio-oil model compound phenol. Results reveal that adding macropores into Ni-based mesoporous C–SiO2–Al2O3 (Ni/MP-CSA) can improve the mass transfer rate and reduce the particles growth, thus improve the catalytic activities in the hydrotreatment of phenol, reducing catalyst sintering at high temperature and improving the stability of the catalyst.


Bio-oil upgrading Cage like Anti-sintering Phenol 



This work was financially supported by National Science Foundation of China (Project No. 21201153) and International Cooperation Project of Henan Province (Project No. 172102410041).


  1. 1.
    W.H. Chen, B.J. Lin, M.Y. Huang, J.S. Chang. Bioresour. Technol. 184, 314 (2015)CrossRefGoogle Scholar
  2. 2.
    A.N.K. Lup, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, Appl. Catal. A 541, 87 (2017)CrossRefGoogle Scholar
  3. 3.
    P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, A.D. Jensen, ACS Catal. 3, 1774 (2013)CrossRefGoogle Scholar
  4. 4.
    Y.P. Zhai, P.H. Zhu, S.L. Li, C.S. Zhang, Z.J. Li, X.M. Xu, G.F. Chen, Z.C. Tan, R.Q. Zhang, Y.G. Liu, J. Renew. Sustain. Energy 6, 043129 (2014)CrossRefGoogle Scholar
  5. 5.
    X.H. Zhang, T.J. Wang, L.L. Ma, Q. Zhang, T. Jiang, Bioresour. Technol. 127, 306 (2013)CrossRefGoogle Scholar
  6. 6.
    A.R. Ardiyanti, S.A. Khromova, R.H. Venderbosch, V.A. Yakovlevb, H.J. Heeresa, Appl. Catal. B 117, 105 (2012)CrossRefGoogle Scholar
  7. 7.
    X.M. Xu, C.S. Zhang, Y.G. Liu, Y.P. Zhai, R.Q. Zhang, Chemosphere 93, 652 (2013)CrossRefGoogle Scholar
  8. 8.
    S.Y. Oha, H. Hwang, H.S. Choi, J.W. Choi, Fuel 153, 535 (2015)CrossRefGoogle Scholar
  9. 9.
    Y.J. Bang, S. Park, S.J. Han, J. Yoo, J.H. Song, J.H. Choi, K.H. Kang, I.K. Song, Appl. Catal. B 180, 179 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.J. Zhang, J.G. Deng, H. Zhang, Y.X. Liu, H.X. Dai, Catal. Today 245, 28 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, X. Wei, Y. Yao, Z. Chen, A. Zhang, W. Li, W.D. Wu, Z. Wu, X.D. Chen, D. Zhao, Small 13, 1702243 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Fan, M. Lv, W. Luo, X. Ran, Y. Deng, W.X. Zhang, J. Yang, Chem. Commun. 54, 3783–3786 (2018)CrossRefGoogle Scholar
  13. 13.
    Q. Wang, Y. Zhao, W. Luo, W. Jiang, J. Fan, L. Wang, W. Jiang, W.X. Zhang, J. Yang, Chem. Commun. 54, 5887–5890 (2018)CrossRefGoogle Scholar
  14. 14.
    J.P. Yang, D.K. Shen, Y. Wei, W. Li, F. Zhang, B. Kong, S.H. Zhang, W. Teng, J.W. Fan, W.X. Zhang, S.X. Dou, D.Y. Zhao, Nano Res. 8, 2503–2514 (2015)CrossRefGoogle Scholar
  15. 15.
    G.H. Wang, Z. Cao, D. Gu, N. Pfander, A.C. Swertz, B. Spliethoff, H.J. Bongard, C. Weidenthaler, W. Schmidt, R. Rinaldi, F. Schuth, Angew. Chem. Int. Ed. 55, 8850–8855 (2016)CrossRefGoogle Scholar
  16. 16.
    X.Q. Yan, X.J. Wang, Y. Tang, G.C. Ma, S.H. Zou, R.H. Li, X.G. Peng, S. Dai, J. Fan, Chem. Mater. 25, 1556 (2013)CrossRefGoogle Scholar
  17. 17.
    M.A. Christopher, P. Keshwalla, G.W. Stephen, D.W. Bruce, N.S. Hondow, K. Wilson, A.F. Lee, ACS Catal. 3, 2122 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Liang, X. Du, C. Gibson, X.W. Du, S.Z. Qiao, Adv. Mater. 25(43), 6226–6231 (2013)CrossRefGoogle Scholar
  19. 19.
    H.L. Yang, X.Y. Zhang, S.W. Li, X.Y. Wang, J.T. Ma, RSC Adv. 4, 9292 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Dinari, G. Mohammadnezhad, A. Nabiyan, Colloid Polym. Sci. 293, 1569 (2015)CrossRefGoogle Scholar
  21. 21.
    Z.D. Zivkovic, D.T. Zivkovic, D.B. Grujicic, J. Therm. Anal. 53, 617 (1998)CrossRefGoogle Scholar
  22. 22.
    Q.J. Guo, M. Wu, K. Wang, L. Zhang, X.F. Xu, Ind. Eng. Chem. Res. 54, 890 (2015)CrossRefGoogle Scholar
  23. 23.
    P.A. Zapata, J. Faria, M.P. Ruiz, D.E. Resasco, Top. Catal. 55, 38 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.Y. Liu, C.X. Liu, C.Y. Zhang, X.F. Yang, J.M. Zachara, Geochim. Cosmochim. Acta 163, 140–155 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Academy of Environmental Science, College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations