Advertisement

Nitrogen-containing high surface area carbon cryogel from co-condensed phenol–urea–formaldehyde resin for CO2 capture

  • Zeliang Li
  • Tingting Chen
  • Xi Wu
  • Lu Luo
  • Zhicheng Zhang
  • Zhihui Li
  • Mizi Fan
  • Zhizhong Su
  • Weigang Zhao
Article
  • 23 Downloads

Abstract

A cost-effective nitrogen-doped super high surface area carbon cryogel has been successfully synthesized from phenol–urea–formaldehyde (PUF) resin. Pore structure and chemical characteristics were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, element analysis, X-ray photoelectron spectrometry, mercury porosimetry and N2 adsorption–desorption. It was found that the organic cryogel with mesopores and macropores from PUF resin having a N content of 9.03 wt%, which is an ideal precursor for preparing N-doped carbon cryogels. The carbon cryogel obtained having a high apparent surface area of up to 1710 m2/g, large micropore volumes up to 0.64 cm3/g, a small average micropore width of 1.04 nm and a moderate nitrogen content of 2.08 wt%. The lab-made carbon cryogel showed good CO2/N2 sorption selectivity, 15.8:1 at 273 K and 16.4:1 at 298 K. The CO2 capture capacities as high as 5.5 mmol/g at 273 K and 4.5 mmol/g at 298 K up to 1 bar were obtained, which were among the highest compared to other commercial carbon materials.

Keywords

Carbon cryogel Nitrogen doping Pore structure Chemical characteristic CO2 capture 

Notes

Acknowledgements

The present research was supported by the National Natural Science Foundation of China (31300488) and the Fujian Agriculture and Forestry University Fund for Distinguished Young Scholars (xjq201420).

References

  1. 1.
    Y. Hamano, S. Tsujimura, O. Shirai, K. Kano, Mater. Lett. 128, 191 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Szczurek, G. Amaral-Labat, V. Fierro, A. Pizzi, A.E. Masson, A. Celzard, Mater. Chem. Phys. 129, 1221 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Szczurek, K. Jurewicz, G. Amaral-Labat, V. Fierro, A. Pizzi, A. Celzard, Carbon 48, 3874 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Ren, J. Zhu, Y. Bi, Y. Xu, L. Zhang, C. Shang, J. Porous Mater. 24, 1165 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Li, G. Reichenauer, J. Fricke, Carbon 40, 2955 (2002)CrossRefGoogle Scholar
  6. 6.
    F.L. Braghiroli, V. Fierro, A. Szczurek, N. Stein, J. Parmentier, A. Celzard, Carbon 90, 63 (2015)CrossRefGoogle Scholar
  7. 7.
    B.S. Yang, K.Y. Kang, M.J.J. Jeong, Korean Phys. Soc. 71, 478 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Du, H. Lei, A. Pizzi, H. Pasch, J. Appl. Polym. Sci. 110, 1182 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Zhao, A. Pizzi, A. Kühn, S. Garnier, J. Appl. Polym. Sci. 77, 249 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Amaral-Labat, A. Szczurek, V. Fierro, A. Pizzi, E. Masson, A. Celzard, Microporous Mesoporous Mater. 158, 272 (2012)CrossRefGoogle Scholar
  11. 11.
    X.L. Zhu, P.Y. Wang, C. Peng, J. Yang, X. Yan, Chin. Chem. Lett. 25, 929 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Serafin, U. Narkiewicz, A.W. Morawski, J. CO2 Util. 18, 73 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Luo, T. Chen, Z. Li, Z. Zhang, W. Zhao, M. Fan, J. CO2 Util. 25, 89 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Zhong, S. Natesakhawat, J.P. Baltrus, D. Luebke, H. Nulwala, K. Matyjaszewski, T. Kowalewski, Chem. Commun. 48, 11516 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Chem. Commun. 48, 10283 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Ashourirad, A.K. Sekizkardes, S. Altarawneh, H.M. El-Kaderi, Chem. Mater. 27, 1349 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B. Parra, C.O. Ania, Carbon 83, 262 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M.H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du, Y. Lin, Small 13, 1603407 (2017)CrossRefGoogle Scholar
  19. 19.
    S.P. Sasikala, H. Kai, B. Giroire, ACS Appl. Mater. Interfaces 8, 30964 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Luo, T. Chen, W. Zhao, M. Fan, Bioresources 12, 6237 (2017)Google Scholar
  21. 21.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non-Cryst. Solids 351, 915 (2005)CrossRefGoogle Scholar
  23. 23.
    A.M. Saeed, P.M. Rewatkar, H.M. Far, T. Taghvaee, S. Donthula, C. Mandal, ACS Appl. Mater. Interfaces 9, 13520 (2017)CrossRefGoogle Scholar
  24. 24.
    J. An, S.J. Geib, N.L. Rosi, J. Am. Chem. Soc. 132, 38 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Li, Z.Y. Sui, Y.N. Sun, P.W. Xiao, X.Y. Wang, B.H. Han, Microporous Mesoporous Mater. 257, 85 (2018)CrossRefGoogle Scholar
  26. 26.
    L. Yue, Q. Xia, L. Wang, L. Wang, H. Dacosta, J.J. Yang, Colloid. Interfaces Sci. 511, 259 (2018)CrossRefGoogle Scholar
  27. 27.
    T. Ratvijitvech, R. Dawson, A. Laybourn, Y.Z. Khimyak, D.J. Adams, A.I. Copper, Polymer 55, 321 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zeliang Li
    • 1
    • 2
  • Tingting Chen
    • 1
  • Xi Wu
    • 1
  • Lu Luo
    • 1
  • Zhicheng Zhang
    • 1
  • Zhihui Li
    • 1
  • Mizi Fan
    • 1
    • 3
  • Zhizhong Su
    • 1
    • 2
  • Weigang Zhao
    • 1
  1. 1.College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.School of Resources and Chemical TechnologySanming UniversitySanmingPeople’s Republic of China
  3. 3.College of Engineering Design and Physical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations