Advertisement

A novel bi-functional metal/solid acid catalyst for the direct reductive amination of nitroarenes synthesized on a resistant mesoporous carbon (CMK-8) support

  • Roozbeh Javad Kalbasi
  • Seyedeh Fardokht Rezayi
Article

Abstract

A metal–acid bi-functional catalyst based on nickel nanoparticles and polystyrene sulfonic acid chains anchored on ordered mesoporous carbon CMK-8 was synthesized through a simple method. This nanocomposite was condignly exploited as a novel metal–solid acid bi-functional heterogeneous catalyst for the one-pot direct reductive amination of aldehydes with nitroarenes. NaBH4 was used as a mild reducing agent under catalytic hydrogen transfer route. Excellent yields at room temperature and short reaction time in a safe combinatorial solvent (ethanol–H2O) achieved thanks to the nickel metals and the acidic nature of polymer incorporated in mesoporous channels of CMK-8. The structural properties of the synthesized catalyst were characterized by FT-IR, XRD, TEM, BET, DRS-UV, EDX-Mapping and ICP techniques. Besides being eco-friendly, the method has several advantages such as simple work-up procedure and moderate to high-yield. Reusability of the catalyst explicates the acceptable stability of the nanocomposite after ten runs without noticeable loss of activity.

Keywords

Mesoporous carbon Bi-functional catalyst Heterogeneous catalyst Direct reductive amination Catalytic hydrogen transfer 

Notes

Acknowledgements

The authors would like to acknowledge financial support by Kharazmi University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10934_2018_666_MOESM1_ESM.docx (991 kb)
Supplementary material 1 (DOCX 991 KB)

References

  1. 1.
    R. Kumar, E. Gravel, A. Hagège, H. Li, D. Verma, I.N. Namboothiri, ChemCatChem 5, 3571 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 18, 487 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Nasrollahzadeh, New J. Chem. 38, 5544 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Saha, B. Ranu, J. Org. Chem. 73, 6867 (2008)CrossRefPubMedGoogle Scholar
  5. 5.
    F. Li, B. Frett, H. Li, Syn. Lett. 25, 1403 (2014)Google Scholar
  6. 6.
    S. Viswanathan, B. Narayanan, Z. Yaakob, P. Periyat, S. Padikkaparambil, J. Porous Mater. 21, 251 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, S.S. Li, M.M. Zhu, Y.M. Liu, H.Y. He, Y. Cao, Green Chem. 18, 2507 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Alonso, P. Riente, M. Yus, Acc. Chem. Res. 44, 379 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    D. Shah, H. Kaur, J. Mol. Catal. A 381, 70 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Alonso, P. Riente, M. Yus, Syn. Lett. 44, 1289 (2008)CrossRefGoogle Scholar
  11. 11.
    G. Chieffi, C. Giordano, D. Esposito, ChemSusChem 8, 3590 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    A. Hakki, R. Dillert, D.W. Bahnemann, ACS Catal. 3, 565 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Du, J. He, Langmuir 27, 2972 (2011)CrossRefPubMedGoogle Scholar
  14. 14.
    O. Mazaheri, R.J. Kalbasi, RSC Adv. 5, 34398 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Ping, H. Liu, Y. Yu, C.Y. Cao, W.G. Song, Chem. Asian. J. 8, 2459 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Dhainaut, J.P. Dacquin, A.F. Lee, K. Wilson, Green Chem. 12, 296 (2010)CrossRefGoogle Scholar
  17. 17.
    R.J. Kalbasi, O. Mazaheri, Catal. Commun. 69, 86 (2015)CrossRefGoogle Scholar
  18. 18.
    R.J. Kalbasi, N. Mosaddegh, C. R. Chimie 15, 988 (2012)CrossRefGoogle Scholar
  19. 19.
    N.D. Lysenko, M.V. Opanasenko, P.S. Yaremov, A.V. Shvets, V.G. Il’in, Theor. Exp. Chem. 46, 51 (2010)CrossRefGoogle Scholar
  20. 20.
    W. Pan, S. Zhang, F. He, S. Gai, Y. Sun, P. Yang, CrystEngComm 17, 5744 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. He, M. Qiao, H. Hu, Y. Pei, H. Li, J. Deng, K. Fan, Mater. Lett. 56, 952 (2002)CrossRefGoogle Scholar
  22. 22.
    S. Ayyaru, S. Dharmalingam, RSC Adv. 3, 25243 (2013)CrossRefGoogle Scholar
  23. 23.
    B. Liu, Z. Zhang, RSC Adv. 3, 12313 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Chytil, W.R. Glomm, E. Vollebekk, H. Begregem, J. Walmsley, J. Sjoblom, E.A. Blekkan, Microporous Mesoporous Mater. 86, 198 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Maiyalagan, T.O. Alaje, K. Scott, J. Phys. Chem. C 116, 2630 (2012)CrossRefGoogle Scholar
  26. 26.
    R.J. Kalbasi, A.A. Nourbakhsh, F. Babaknezhad, Catal. Commun. 12, 955 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Yang, X. Cui, Y. Deng, F. Shi, Synth. Commun. 44, 1314 (2014)CrossRefGoogle Scholar
  28. 28.
    R.C. Wade, J. Mol. Catal. 18, 273 (1983)CrossRefGoogle Scholar
  29. 29.
    C. Li, J. Yang, P. Wang, J. Liu, Q. Yang, Microporous Mesoporous Mater. 123, 228 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.Z. Chen, Y.X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S.H. Yu, H.L. Jiang, ACS Catal. 5, 2062 (2015)CrossRefGoogle Scholar
  31. 31.
    R.J. Kalbasi, P. Parishani, O. Mazaheri, J. Clust. Sci. 29, 561 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran

Personalised recommendations