Advertisement

Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification

  • Ekrachan Chaichana
  • Nopparat Boonsinvarothai
  • Nithinart Chitpong
  • Bunjerd Jongsomjit
Article

Abstract

The catalytic ethanol dehydration of ethanol over the solvothermal-derived alumina catalysts was investigated in this study. First, alumina catalysts were synthesized by the solvothermal methods to obtain three different phase composition of alumina catalysts including γ-phase (G–Al), χ-phase (C–Al) and equally mixed χ–γ phases (M–Al). Then, all catalysts were modified with boron (G–Al–B, C–Al–B and M–Al–B). It was found that the boron modification increased the amounts of total acid sites and the ratio of weak to strong acid sites (WSR). The catalytic activity and product selectivity of six catalysts via catalytic ethanol dehydration at 200, 300, and 400 °C were measured. For all catalysts, it revealed that ethanol conversion increased with increased temperatures from 200 to 400 °C. At 200–300 °C, the unmodified catalysts tended to exhibit the higher catalytic activity than the boron-modified catalysts. However, at high temperature (400 °C), the boron modification tended to increase the catalytic activity, especially for the M–Al–B catalyst (complete ethanol conversion at 400 °C). Considering ethylene production, the M–Al–B exhibited the highest ethylene yield among other catalysts with 92% at 400 °C. For diethyl ether, it was observed that the M–Al catalyst gave the highest diethyl ether yield of 57% at 300 °C. This is because the boron modification increased the amounts of total acid sites, which can promote the production of ethylene, while this is not preferable for diethyl ether production, which is favored by weak acid sites.

Keywords

Alumina catalysts Boron modification Ethanol dehydration Ethylene Diethyl ether 

Notes

Acknowledgements

The authors thank the Grant for International Research Integration: Chula Research Scholar, Ratchadaphiseksomphot Endowment Fund for financial support of this project.

References

  1. 1.
    G. Chen, S. Li, F. Jiao, Q. Yuan, Catal. Today 125, 111 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Krutpijit, B. Jongsomjit, J. Oleo Sci. 65, 347 (2016)CrossRefPubMedGoogle Scholar
  3. 3.
    I. Takahara, M. Saito, M. Inaba, K. Murata, Catal. Lett. 105, 249 (2005)CrossRefGoogle Scholar
  4. 4.
    A.M. Nadeem, G.I.N. Waterhouse, H. Idriss, Catal. Today 182, 16 (2012)CrossRefGoogle Scholar
  5. 5.
    V.V. Bokade, G.D. Yadav, Appl. Clay Sci. 53, 263 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, Y. Wu, L. Tao, B. Dai, M. Yang, Z. Chen, X. Zhu, J. Ind. Eng. Chem. 16, 717 (2010)CrossRefGoogle Scholar
  7. 7.
    IHS Chemical Economics Handbook, Ethyl Ether. (2014), http://www.ihs.com/products/chemical/planning/ceh/ethyl-ether.aspx. Accessed 5 Nov 2017
  8. 8.
    J.B. Cohen, A Class-Book of Organic Chemistry, Limited edn (Macmillan and Company Limited, London, 1920), p. 39Google Scholar
  9. 9.
    X. Zhang, R. Wang, X. Yang, F. Zhang, Microporous Mesoporous Mater. 116, 210 (2008)CrossRefGoogle Scholar
  10. 10.
    Q. Sheng, S. Guo, K. Ling, L. Zhao, J. Braz. Chem. Soc. 25, 1365 (2014)Google Scholar
  11. 11.
    Q. Sheng, K. Ling, Z. Li, L. Zhao, Fuel Process. Technol. 110, 73 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Matachowski, M. Zimowska, D. Mucha, T. Machej, Appl. Catal. B 123–124, 448 (2012)CrossRefGoogle Scholar
  13. 13.
    D. Varisli, T. Dogu, G. Dogu, Chem. Eng. Sci. 62, 5349 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Fan, D.-J. Dai, H.-S. Wu, Materials 6, 101 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    A. Zaherian, M. Kazemeini, M. Aghaziarati, S. Alamolhoda, J. Porous Mater. 20, 151 (2013)CrossRefGoogle Scholar
  16. 16.
    O. Winter, M.T. Eng, Hydrocarbon Process. 55, 125 (1976)Google Scholar
  17. 17.
    D.G. Poduval, On the Role of Acidity in Amorphous Silica–Alumina Based Catalysts (Technische Universiteit Eindhoven, Eindhoven, 2011)Google Scholar
  18. 18.
    J. Janlamool, B. Jongsomjit, J. Oleo Sci. 66, 1029 (2017)CrossRefPubMedGoogle Scholar
  19. 19.
    T. Chanchuey, C. Autthanit, B. Jongsomjit, J. Chem. 2016, 8 (2015)Google Scholar
  20. 20.
    A. Klisin„ska, K. Samson, I. Gressel, B. Grzybowska, Appl. Catal. A 309, 10 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Klisin„ska, A. Haras, K. Samson, M. Witko, B. Grzybowska, J. Mol. Catal. A 210, 87 (2004)CrossRefGoogle Scholar
  22. 22.
    S.A. El-Hakam, E.A. El-Sharkawy, Mater. Lett. 36, 167 (1998)CrossRefGoogle Scholar
  23. 23.
    S. Erkfeldt, M. Petersson, A. Palmqvist, Appl. Catal. B 117–118, 369 (2012)CrossRefGoogle Scholar
  24. 24.
    A.L. Petre, J.A. Perdigon-Melona, A. Gervasini, A. Aurouxa, Top. Catal. 19, 271 (2002)CrossRefGoogle Scholar
  25. 25.
    Y. Saih, K. Segawa, Appl. Catal. A 353, 258 (2009)CrossRefGoogle Scholar
  26. 26.
    T. Xiu, J. Wang, Q. Liu, Microporous Mesoporous Mater. 143, 362 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Feng, X. Yan, X. Hu, J. Porous Mater. (2017).  https://doi.org/10.1007/s10934 CrossRefGoogle Scholar
  28. 28.
    K. Pansanga, J. Panpranot, O. Mekasuwandumrong, C. Satayaprasert, J.G. Goodwin, P. Praserthdam, Catal. Commun. 9, 207 (2008)CrossRefGoogle Scholar
  29. 29.
    S.S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, D.I. Kondarides, Appl. Catal. B 145, 136 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Khom-in, P. Praserthdam, J. Panpranot, O. Mekasuwandumrong, Catal. Commun. 9, 1955 (2008)CrossRefGoogle Scholar
  31. 31.
    C. Meephoka, C. Chaisuk, P. Samparnpiboon, P. Praserthdam, Catal. Commun. 9, 546 (2008)CrossRefGoogle Scholar
  32. 32.
    O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, P. Praserthdam, Mater. Chem. Phys. 100, 445 (2006)CrossRefGoogle Scholar
  33. 33.
    I. Masashi, K. Hiroshi, I. Tomoyuki, J. Am. Ceram. Soc. 75, 2597 (1992)CrossRefGoogle Scholar
  34. 34.
    O. Mekasuwandumrong, P.L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, W. Tanakulrungsank, Inorg. Chem. Commun. 6, 930 (2003)CrossRefGoogle Scholar
  35. 35.
    H.A. Silim, Egypt. J. Sol. 26, 15 (2003)Google Scholar
  36. 36.
    D.J. Perez-Martiez, P. Eloy, E.M. Gaigneaux, S.A. Giraldo, A. Centeno, Appl. Catal. A 390, 59 (2010)CrossRefGoogle Scholar
  37. 37.
    T.S. Glazneva, N.S. Kotsarenko, E.A. Paukshtis, Kinet. Catal. 49, 859 (2008)CrossRefGoogle Scholar
  38. 38.
    G.V. Franks, Y. Gan, J. Am. Ceram. Soc. 90, 3373 (2007)CrossRefGoogle Scholar
  39. 39.
    H. Knozinger, P. Ratnasamy, Catal. Rev. 17, 31 (1978)CrossRefGoogle Scholar
  40. 40.
    G. Cucinieri Colorio, A. Auroux, B. Bonnetot, J. Therm. Anal. 40, 1267 (1993)CrossRefGoogle Scholar
  41. 41.
    W. Chen, F. Mauge, J. van Gestel, H. Nie, D. Li, X. Long, J. Catal. 304, 47 (2013)CrossRefGoogle Scholar
  42. 42.
    M.L. Occelli, Advances in Fluid Catalytic Cracking: Testing, Characterization, and Environmental Regulations (CRC Press, Boca Raton, 2010), pp. 231–232CrossRefGoogle Scholar
  43. 43.
    S. Sato, M. Kuroki, T. Sodesawa, F. Nozaki, G.E. Maciel, J. Mol. Catal. A 104, 171 (1995)CrossRefGoogle Scholar
  44. 44.
    T. Nakajima, B. Žemva, A. Tressaud, Advanced Inorganic Fluorides: Synthesis, Characterization and Applications (Elsevier Science, New York, 2000), p. 384Google Scholar
  45. 45.
    J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, J. Colloid Interface Sci. 296, 572 (2006)CrossRefPubMedGoogle Scholar
  46. 46.
    M. Wannaborworn, P. Praserthdam, B. Jongsomjit, J. Nanomater. 2015, 11 (2015)CrossRefGoogle Scholar
  47. 47.
    H. Xin, X. Li, Y. Fang, X. Yi, W. Hu, Y. Chu, F. Zhang, A. Zheng, H. Zhang, X. Li, J. Catal. 312, 204 (2014)CrossRefGoogle Scholar
  48. 48.
    T. Kamsuwan, B. Jongsomjit, Eng. J. 20, 13 (2016)CrossRefGoogle Scholar
  49. 49.
    R. Feng, S. Liu, P. Bai, K. Qiao, Y. Wang, H.A. Al-Megren, M.J. Rood, Z. Yan, J. Phys. Chem. C 118, 6226 (2014)CrossRefGoogle Scholar
  50. 50.
    T. Kito-Borsa, S. Cowley, Prepr. Pap. Am. Chem. Soc. 856, 49 (2004)Google Scholar
  51. 51.
    T.K. Phung, G. Busca, Chem. Eng. J. 272, 92 (2015)CrossRefGoogle Scholar
  52. 52.
    T. Kamsuwan, B. Jongsomjit, Eng. J. 20, 63 (2016)CrossRefGoogle Scholar
  53. 53.
    K. Ramesh, L. Hui, Y. Han, A. Borgna, Catal. Commun. 10, 567 (2009)CrossRefGoogle Scholar
  54. 54.
    C. Duan, X. Zhang, R. Zhou, Y. Hua, L. Zhang, J. Chen, Fuel Process. Technol. 108, 31 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ekrachan Chaichana
    • 1
  • Nopparat Boonsinvarothai
    • 2
  • Nithinart Chitpong
    • 3
  • Bunjerd Jongsomjit
    • 2
  1. 1.Research Center of Natural Materials and Products, Chemistry Program, Faculty of Science and TechnologyNakhon Pathom Rajabhat UniversityMuangThailand
  2. 2.Department of Chemical Engineering, Center of Excellence on Catalysis and Catalytic Reaction Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  3. 3.Department of Textile Engineering, Faculty of EngineeringRajamangala University of Technology ThanyaburiKhlong HokThailand

Personalised recommendations