Synthesis of ultra small nanoparticles (< 50 nm) of mesoporous MCM-48 for bio-adsorption

  • Seyed Mohammad Mousavi Elyerdi
  • Mehdi Nasiri SarviEmail author
  • Andrea J. O’Connor


Mono-dispersed spherical MCM-48 mesoporous silica nanoparticles (MSN) with cubic Ia3d mesostructure were synthesized under different stirring conditions using hexadecyltrimethyl ammonium bromide as structure directing agent and EO20PO70EO20 copolymer as particle size control. Results indicated that the EO20PO70EO20 works well in the reduction of nanoparticle size. In addition, increasing the stirring rate transformed mesoporosity from 2-D hexagonal P6mm to 3-D cubic Ia3d. The biomolecule adsorption properties of prepared ultra small nanoparticles of MCM-48 were compared with that of MCM-48 with ten times larger particle sizes. MCM-48 with smaller particle sizes adsorbed much more vitamin B12 compared with MCM-48 with larger particles. In addition, diffusion of vitamin in the intraparticle spaces occurred only for MCM-48 with ultra-small nanoparticles.


Mesoporous MCM-48 Nanoparticle size Biomolecule adsorption 



The authors acknowledge access to infrastructure from the Mining Engineering Department of the Isfahan University of Technology.

Author Contributions

SMME synthesized the samples. MNS interpreted the results and organizing the manuscript with AJO helped in finalizing the manuscript with helping the results interpretation and the writing of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    M.A. Alavijeh, M.N. Sarvi, Z.R. Afarani, Properties of adsorption of vitamin B12 on nanoclay as a versatile carrier. Food Chem. 219, 207–214 (2017)CrossRefGoogle Scholar
  2. 2.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114(27), 10834–10843 (1992)CrossRefGoogle Scholar
  3. 3.
    V. Bertolino, G. Cavallaro, G. Lazzara, M. Merli, S. Milioto, F. Parisi, L. Sciascia, Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials. Ind. Eng. Chem. Res. 55(27), 7373–7380 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Bhagiyalakshmi, L. Yun, R. Anuradha, H. Jang, Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J. Porous Mater. 17(4), 475–484 (2010)CrossRefGoogle Scholar
  5. 5.
    C. Bharti, U. Nagaich, A. Pal, N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharm. Investig. 5(3), 124–133 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Botella, A. Corma, M. Quesada, Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs. J. Mater. Chem. 22(13), 6394–6401 (2012)CrossRefGoogle Scholar
  7. 7.
    G. Cavallaro, G. Lazzara, R. Fakhrullin, Mesoporous inorganic nanoscale particles for drug adsorption and controlled release. Ther. Deliv. 9(4), 287–301 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Du, J. He, Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications. Nanoscale 3(10), 3984–4002 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Eid (2008). In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B 266(23): 5020–5026CrossRefGoogle Scholar
  10. 10.
    X. Fang, X. Zhao, W. Fang, C. Chen, N. Zheng, Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5(6), 2205–2218 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Grün, I. Lauer, K.K. Unger, The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9(3), 254–257 (1997)CrossRefGoogle Scholar
  12. 12.
    V. Gun’ko, V. Turov, A. Turov, V. Zarko, V. Gerda, V. Yanishpolskii, I. Berezovska, V. Tertykh, Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas. Cent. Eur. J. Chem. 5(2), 420–454 (2007)Google Scholar
  13. 13.
    M. Hajjami, Z. Yousofvand, Preparation and characterization of organically modified MCM-48 as heterogonous catalyst for oxidation of sulfides and thiols. Catal. Lett. 145(9), 1733–1740 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)CrossRefGoogle Scholar
  15. 15.
    H.Y. Huang, R.T. Yang, D. Chinn, C.L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42(12), 2427–2433 (2002)CrossRefGoogle Scholar
  16. 16.
    K. Ikari, K. Suzuki, H. Imai, Structural control of mesoporous silica nanoparticles in a binary surfactant system. Langmuir 22(2), 802–806 (2005)CrossRefGoogle Scholar
  17. 17.
    I. Izquierdo-Barba, Á Martinez, A.L. Doadrio, J. Pérez-Pariente, M. Vallet-Regí, Release evaluation of drugs from ordered three-dimensional silica structures. Eur. J. Pharm. Sci. 26(5), 365–373 (2005)CrossRefGoogle Scholar
  18. 18.
    I. Izquierdo-Barba, E. Sousa, J. Doadrio, A. Doadrio, J. Pariente, A. Martínez, F. Babonneau, M. Vallet-Regí, Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J. Sol–Gel. Sci. Technol. 50(3), 421–429 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Kim, J. Ida, V.V. Guliants, Y.S. Lin, Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. J. Phys. Chem. B 109(13), 6287–6293 (2005)CrossRefGoogle Scholar
  20. 20.
    T.-W. Kim, P.-W. Chung, V.S.Y. Lin, Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem. Mater. 22(17), 5093–5104 (2010)CrossRefGoogle Scholar
  21. 21.
    N.Z. Knezevic, J.-O. Durand, Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale 7(6), 2199–2209 (2015)CrossRefGoogle Scholar
  22. 22.
    N.Z. Knezevic, V.S.Y. Lin, A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5(4), 1544–1551 (2013)CrossRefGoogle Scholar
  23. 23.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397), 710–712 (1992)CrossRefGoogle Scholar
  24. 24.
    C.T. Kresge, W.J. Roth, The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42(9), 3663–3670 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Liu, S. Wang, Z. Rong, X. Wang, G. Gu, W. Sun, Synthesis of structurally stable MCM-48 using mixed surfactants as co-template and adsorption of vitamin B12 on the mesoporous MCM-48. J. Non-Cryst. Solids 356(25–27), 1246–1251 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Ma, L. Qi, J. Ma, Y. Wu, O. Liu, H. Cheng, Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids Surf. A 229(1–3), 1–8 (2003)CrossRefGoogle Scholar
  27. 27.
    G. Marci, E. Garcia-Lopez, M. Bellardita, F. Parisi, C. Colbeau-Justin, S. Sorgues, L.F. Liotta, L. Palmisano, Keggin heteropolyacid H3PW12O40 supported on different oxides for catalytic and catalytic photo-assisted propene hydration. Phys. Chem. Chem. Phys. 15(32), 13329–13342 (2013)CrossRefGoogle Scholar
  28. 28.
    S.P. Naik, S. Yamakita, M. Ogura, T. Okubo, Studies on mesoporous silica films synthesized using F127, a triblock co-polymer. Microporous Mesoporous Mater. 75(1–2), 51–59 (2004)CrossRefGoogle Scholar
  29. 29.
    R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A.E. Ostafin, Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem. Mater. 14(11), 4721–4728 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Popat, J. Liu, Q. Hu, M. Kennedy, B. Peters, G.Q. Lu, S.Z. Qiao, Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4(3), 970–975 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Qiu, S. Zhan, H. Yu, D. Zhu, S. Wang, Facile preparation of ordered mesoporous MnCo2O4 for low-temperature selective catalytic reduction of NO with NH3. Nanoscale 7(6), 2568–2577 (2015)CrossRefGoogle Scholar
  32. 32.
    J.M. Rosenholm, C. Sahlgren, M. Linden, Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities and challenges. Nanoscale 2(10), 1870–1883 (2010)CrossRefGoogle Scholar
  33. 33.
    M.N. Sarvi, T. Budianto Bee, C.K. Gooi, B.W. Woonton, M.L. Gee, A.J. O’Connor, Development of functionalized mesoporous silica for adsorption and separation of dairy proteins. Chem. Eng. J. 235, 244–251 (2014)CrossRefGoogle Scholar
  34. 34.
    M.N. Sarvi, G.W. Stevens, M.L. Gee, A.J. O’Connor, The co-micelle/emulsion templating route to tailor nano-engineered hierarchically porous macrospheres. Microporous Mesoporous Mater. 149(1), 101–105 (2012)CrossRefGoogle Scholar
  35. 35.
    K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)CrossRefGoogle Scholar
  36. 36.
    I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, V.S.Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968)CrossRefGoogle Scholar
  38. 38.
    E.Y. Stovpiaga, D.A. Kurdyukov, Y.A. Kukushkina, V.V. Sokolov, M.A. Yagovkina, Monodisperse spherical silica particles with controlled-varied diameter of micro- and mesopores. Glass Phys. Chem 41(3), 316–323 (2015)CrossRefGoogle Scholar
  39. 39.
    K. Suzuki, K. Ikari, H. Imai, Synthesis of Silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J. Am. Chem. Soc. 126(2), 462–463 (2003)CrossRefGoogle Scholar
  40. 40.
    W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div 89(2), 31–60 (1963)Google Scholar
  41. 41.
    F.-Y. Wei, Z.-W. Liu, J. Lu, Z.-T. Liu, Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous Mesoporous Mater. 131(1–3), 224–229 (2010)CrossRefGoogle Scholar
  42. 42.
    J. Xu, W. Liu, Y. Yu, J. Du, N. Li, L. Xu, Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Adv. 4(71), 37470–37478 (2014)CrossRefGoogle Scholar
  43. 43.
    W.J. Xu, J. Riikonen, V.P. Lehto, Mesoporous systems for poorly soluble drugs. Int. J. Pharm. 453(1), 181–197 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Yang, Y. Wang, G. Luo, Y. Dai, Preparation and functionalization of mesoporous silica spheres as packing materials for HPLC. Particuology 6(3), 143–148 (2008)CrossRefGoogle Scholar
  45. 45.
    P. Yang, D. Zhao, B.F. Chmelka, G.D. Stucky, Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 10(8), 2033–2036 (1998)CrossRefGoogle Scholar
  46. 46.
    K. Yano, Y. Fukushima, Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. J. Mater. Chem. 14(10), 1579–1584 (2004)CrossRefGoogle Scholar
  47. 47.
    Y.-J. Yu, J.-L. Xing, J.-L. Pang, S.-H. Jiang, K.-F. Lam, T.-Q. Yang, Q.-S. Xue, K. Zhang, P. Wu, Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces. 6(24), 22655–22665 (2014)CrossRefGoogle Scholar
  48. 48.
    X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4(5), 1707–1716 (2012)CrossRefGoogle Scholar
  49. 49.
    D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater. 12(2), 275–279 (2000)CrossRefGoogle Scholar
  50. 50.
    W. Zhao, Y. Luo, P. Deng, Q. Li, Synthesis of Fe-MCM-48 and its catalytic performance in phenol hydroxylation. Catal. Lett. 73(2), 199–202 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seyed Mohammad Mousavi Elyerdi
    • 1
  • Mehdi Nasiri Sarvi
    • 1
    Email author
  • Andrea J. O’Connor
    • 2
  1. 1.Department of Mining EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.School of Chemical and Biomedical Engineering, Particulate Fluids Processing CentreThe University of MelbourneParkvilleAustralia

Personalised recommendations