Journal of Porous Materials

, Volume 26, Issue 1, pp 205–215 | Cite as

Coordination polymer derived Ni based composite material with N-doped mesoporous carbon as matrix for pollutants removal

  • Lele Lu
  • Shiyue Bi
  • Xinxin XuEmail author
  • Lijun BianEmail author
  • Zhenyu LiEmail author


To obtain a magnetic composite material for water treatment, a Ni based composite material with nitrogen doped mesoporous carbon as matrix (Ni@NC) has been synthesized with coordination polymer as precursor. In Ni@NC, Ni nanoparticle with the size about 3–5 nm dispersed evenly in nitrogen doped mesoporous carbon matrix. Ni@NC exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with the existence of sodium borohydride (NaBH4). The conversion efficiency reaches almost 100% in 160 s with the amount of Ni@NC as low as 5 mg. After eight successive cycles of reductions, the efficiency still retains above 99%. For a catalyst, chemical content plays an important role in its performance. Here, the influence of nitrogen species on 4-nitrophenol reductive property is discussed in detail, which illustrates pyrrolic N and quaternary N both play significant roles during catalytic reduction process. In addition, Ni@NC also possesses excellent activity in catalytic reduction of organic dyes, such as Rhodamine B (RhB), methyl orange (MO) and methylene blue (MB). Due to its large surface area and suitable pore size, Ni@NC also possesses adsorption removal property towards tetracycline and Cr2O72−. Magnetic measurement reveals ferromagnetic character of Ni@NC, which facilitates its magnetic separation from the treated samples. All these merits make Ni@NC a promising multifunctional environmental material in waste water treatment.


Coordination polymer Magnetic material Nitrogen doped carbon matrix Catalytic reduction Adsorption removal 



This work was supported by National Natural Science Foundation (21303010) and Opening Project of Key Laboratory of Polyoxometalate Science of Ministry of Education (130028720) and Fundamental Research Funds for the Central University of Northeastern University (N170504025).

Supplementary material

10934_2018_649_MOESM1_ESM.docx (520 kb)
Supplementary material 1 (DOCX 519 KB)


  1. 1.
    N. Sahinera, H. Ozaya, O. Ozaya, N. Aktasb, Appl. Catal. A Gen. 385, 201 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Jiang, J. Xie, D. Jiang, X. Wei, M. Chen, CrystEngComm 15, 560 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Wu, M. Wen, Q. Wu, H. Fang, J. Phys. Chem. C 118, 6307 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Sahiner, S. Yildiz, H. Al-Lohedan, Appl. Catal. B Environ. 166, 145 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Appl. Catal. B Environ. 180, 408 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Zheng, J. Shu, Z. Wang, Mater. Lett. 158, 339 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Hasan, D.W. Cho, C.M. Chon, K. Yoon, H. Song, Chem. Eng. J. 298, 183 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Marais, T. Nyokong, J. Hazard. Mater. 152, 293 (2008)CrossRefGoogle Scholar
  9. 9.
    S.T. Tan, A.A. Umar, M.M. Salleh, J. Alloys Compd. 650, 299 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Su, S. Huang, T. Wang, L. Peng, X. Wang, J. Hazard. Mater. 295,119, (2015)Google Scholar
  11. 11.
    S. Gazi, R. Ananthakrishnan, Appl. Catal. B Environ. 105, 317 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Stergiou, N. Tagmatarchis, ACS Appl. Mater. Interfaces 8, 21576 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Sarkar, A.K. Guria, N. Pradhan, Chem. Commun. 49, 6018 (2013)CrossRefGoogle Scholar
  14. 14.
    O.A. O’Connor, L.Y. Young, Environ. Toxicol. Chem. 8, 853 (1989)CrossRefGoogle Scholar
  15. 15.
    M. Zou, M. Du, M. Zhang, T. Yang, H. Zhu, P. Wang, S. Bao, Mater. Res. Bull. 61, 375 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Kastner, A.F. Thünemann, Langmuir 32, 7383 (2016)CrossRefGoogle Scholar
  17. 17.
    I. Najdovski, P.R. Selvakannanab, A.P. O’Mullane, RSC Adv. 4, 7207 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, G. Chen, M. Chaker, F. Rosei, D. Ma, Appl. Catal. B Environ. 132, 107 (2013)CrossRefGoogle Scholar
  19. 19.
    B. Li, Y. Hao, X. Shao, H. Tang, T. Wang, J. Zhu, S. Yan, J. Catal. 329, 368 (2015)CrossRefGoogle Scholar
  20. 20.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Leea, M.H. Cho, RSC Adv. 4, 16782 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Huang, W. Ye, Q. Liu, X. Qiu, ACS Appl. Mater. Interfaces 6, 14469 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Wunder, Y. Lu, M. Albrecht, M. Ballauff, ACS Catal. 1, 908 (2011)CrossRefGoogle Scholar
  23. 23.
    Z. Jiang, X. Lv, D. Jiang, J. Xie, D. Mao, J. Mater. Chem. A 1, 14963 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Pal, C. Mondal, A.K. Sasmal, M. Ganguly, Y. Negishi, T. Pal, ACS Appl. Mater. Interfaces 6, 9173 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Kaiser, L. Leppert, H. Welz, F. Polzer, S. Wunder, N. Wanderka, M. Albrecht, T. Lunkenbein, J. Breu, S. Kümmel, Y. Lu, M. Ballauff, Phys. Chem. Chem. Phys. 14, 6487 (2012)CrossRefGoogle Scholar
  26. 26.
    T.R. Mandlimath, B. Gopal, J. Mol. Catal. A Chem. 350, 9 (2011)CrossRefGoogle Scholar
  27. 27.
    Z. Xiong, L. Zhang, X. Zhao, Chem. Eur. J. 20, 14715 (2014)CrossRefGoogle Scholar
  28. 28.
    A.K. Sasmal, J. Pal, R. Sahoo, P. Kartikeya, S. Dutta, T. Pal, J. Phys. Chem. C 120, 21580 (2016)CrossRefGoogle Scholar
  29. 29.
    H.W. Hu, J. Xin, H. Hu, X. Wang, D. Miao, Y. Liu, J. Mater. Chem. A 3, 11157 (2015)CrossRefGoogle Scholar
  30. 30.
    Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. Cheng, Q. Li, M. Wang, R. Che, ACS Appl. Mater. Interfaces 7, 18491 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C 114, 8814 (2010)CrossRefGoogle Scholar
  32. 32.
    Z. Wu, B. Hu, P. Wu, H. Liang, Z. Yu, Y. Lin, Y. Zheng, Z. Li, S. Yu, NPG Asia Mater. 8, e288 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.C. Huang, B. Long, H.B. Li, M.S. Balogun, Z.B. Rui, Y.X. Tong, H.B. Ji, Adv. Mater. Interfaces 2, 1500249 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Chen, Y. Zhang, W. Jiang, X. Zhang, Z. Dai, L. Wan, J. Hu, ACS Nano 10, 8851 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Yang, X. Feng, H. Tan, H. Zang, X. Wang, Y. Wang, E. Wang, Y. Li, J. Mater. Chem. A 4, 3947 (2016)CrossRefGoogle Scholar
  36. 36.
    K. Ranganathan, A. Morais, I. Nongwe, C. Longo, A.F. Nogueira, N.J. Coville, J. Mol. Catal. A Chem. 422, 165 (2016)CrossRefGoogle Scholar
  37. 37.
    F. Wang, S. Song, K. Li, J. Li, J. Pan, S. Yao, X. Ge, J. Feng, X. Wang, H. Zhang, Adv. Mater. 28, 10679 (2016)CrossRefGoogle Scholar
  38. 38.
    S.M. Husnain, W. Um, Y. Chang, Y. Chang, Chem. Eng. J. 308, 798 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Li, C. Zeng, J. Jiang, L. Ai, J. Mater. Chem. A 4, 7476 (2016)CrossRefGoogle Scholar
  40. 40.
    P. Tan, X. Xie, X. Liu, T. Pan, C. Gu, P. Chen, J. Zhou, Y. Pan, L. Sun, J. Hazard. Mater. 321, 344 (2017)CrossRefGoogle Scholar
  41. 41.
    W. Cui, N. Cheng, Q. Liu, C. Ge, A.M. Asiri, X. Sun, ACS Catal. 4, 2658 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Lv, J. Wang, Q. Huang, Q. Yang, Z. Huang, C. Zhang, RSC Adv. 6, 75870 (2016)CrossRefGoogle Scholar
  43. 43.
    C. Du, H. Huang, Y. Wu, S. Wu, W. Song, Nanoscale 8, 16251 (2016)CrossRefGoogle Scholar
  44. 44.
    J. Li, Y. Tang, C. Liu, S. Li, R. Li, L. Dong, Z. Dai, J. Baoa, Y. Lan, J. Mater. Chem. A 4, 120 (2016)Google Scholar
  45. 45.
    Y.C. Huang, H.B. Li, M.S. Balogun, W.Y. Liu, Y.X. Tong, X.H. Lu, H.B. Ji, ACS Appl. Mater. Interfaces 6, 22920–22927 (2014)CrossRefGoogle Scholar
  46. 46.
    M.S. Balogun, W.T. Qiu, H. Yang, W.J. Fan, Y.C. Huang, P.P. Fang, G.R. Li, H.B. Ji, Y.X. Tong, Energy Environ. Sci. 9, 3411–3416 (2016)CrossRefGoogle Scholar
  47. 47.
    Y. Lu, H. Ang, Q. Yan, E. Fong, Chem. Mater. 28, 5743 (2016)CrossRefGoogle Scholar
  48. 48.
    Z. Pu, M. Wang, Z. Kou, I.S. Amiinu, S. Mu, Chem. Commun. 52, 12753 (2016)CrossRefGoogle Scholar
  49. 49.
    Y.C. Huang, W.J. Fan, B. Long, H.B. Li, F.Y. Zhao, Z.L. Liu, Y.X. Tong, H.B. Ji, Appl. Catal. B Environ. 185, 68–76 (2016)CrossRefGoogle Scholar
  50. 50.
    B.M. Mogudi, P. Ncube, R. Meijboom, Appl. Catal. B Environ. 198, 74 (2016)CrossRefGoogle Scholar
  51. 51.
    T. Aditya, A. Pal, T. Pal, Chem. Commun. 51, 9410 (2015)CrossRefGoogle Scholar
  52. 52.
    X. Kong, Z. Sun, M. Chen, C. Chen, Q. Chen, Energy Environ. Sci. 6, 3260 (2013)CrossRefGoogle Scholar
  53. 53.
    P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N.S. Alharbi, A. Alsaedi, T. Hayat, Y. Chen, X. Wang, Chem. Eng. J. 306, 280 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.College of ScienceNortheast Forestry UniversityHaerbinPeople’s Republic of China

Personalised recommendations