Journal of Porous Materials

, Volume 26, Issue 1, pp 227–237 | Cite as

Hydrophobic and hierarchical modification of TS-1 and application for propylene epoxidation

  • Baohe Wang
  • Liang Lu
  • Baomin Ge
  • Shuang ChenEmail author
  • Jing Zhu
  • Dongwei Wei


Hierarchical and hydrophobic TS-1 was obtained by the desilication and silanization of TS-1. The modified TS-1 was characterized by adsorption–desorption isotherms analysis, transmission electron microscope, scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy and contact angle measurement. It demonstrates that modified TS-1 has hierarchical channel structures consisting of micropores and mesopores. The average pore diameters of the micropores and mesopores are 0.55 and 5–10 nm, respectively. The contact angle measurements indicate that modified TS-1 is hydrophobic. The effects of the desilication and silanization of TS-1 on the catalyst structure and catalytic properties of propylene epoxidation were investigated. Modified TS-1 showed better catalytic activity and catalytic life than the TS-1 without modification. The H2O2 conversion, PO selectivity and PO concentration reached 99.72%, 91.33% and 0.85 mol L−1, respectively.


TS-1 Hierarchical Hydrophobic Propylene epoxidation 



Relative crystallinity


Propene oxide


Hydrogen peroxide-to-propene oxide


Propylene glycol monomethyl ether


Propylene glycol


X-ray diffraction


Fourier transform infrared spectroscopy


Transmission electron microscope


Scanning electron microscope




Thermal conductivity detector


Tetraethyl orthosilicate


Tetra-butyl ortho-titanate


Tetrapropylammonium hydroxide


Inductively coupled plasma optical emission spectrometry



The authors are grateful of financial support by National Natural Science Foundation of China (21606168).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    H.K.D. Nguyen, G. Sankar, R.A. Catlow, J. Porous Mater. 24, 421 (2017)CrossRefGoogle Scholar
  2. 2.
    S.P.D. Ormond, M. Ratova, P. Kelly, M. Edge, B. Mihailova, L. Tosheva, J. Porous Mater. 23, 1421 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Mielby, J.O. Abildstrøm, S. Pérez-Ferreras, S.B. Rasmussen, S. Kegnæs, J. Porous Mater. 21, 531 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Perego, A. Carati, P. Ingallina, M.A. Mantegazza, G. Bellussi, Appl. Catal. A 221, 63 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Kalyoncu, D. Düzenli, I. Onal, A. Seubsai, D. Noon, S. Senkan, Catal. Commun. 61, 16 (2015)CrossRefGoogle Scholar
  6. 6.
    X.W. Nie, X.J. Ji, Y.G. Chen, X.W. Guo, C.S. Song, Mol. Catal. 441, 150 (2017)CrossRefGoogle Scholar
  7. 7.
    W. Song, G. Xiong, H. Long, F. Jin, L. Liu, X. Wang, Microporous Mesoporous Mater. 212, 48 (2015)CrossRefGoogle Scholar
  8. 8.
    J.C. Jubin, R.A. Grey, J. Jubin, WO2005092874-A1 (2005)Google Scholar
  9. 9.
    M. Pascaly, M. Baerz, M. Brendel, R. Jahn, J. Schemel, M. Dopfer, TW201731829-A (2017)Google Scholar
  10. 10.
    H. Xin, J. Zhao, S. Xu, J. Li, W. Zhang, X. Guo, C. Li, J. Phys. Chem. C 114, 6553 (2010)CrossRefGoogle Scholar
  11. 11.
    D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, Appl. Catal. A 435, 32 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Guo, G. Xiong, L. Liu, P. Li, L. Hao, Y. Cao, F. Tian, J. Porous Mater. 23, 407 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Peng, C.M. Wu, J. Baltrusaities, N.M. Dimitrijevic, T. Rajh, R.T. Koodali, Int. J. Hydrogen Energy 41, 4106 (2016)CrossRefGoogle Scholar
  14. 14.
    T.A. Zepeda, A. Infantes-Molina, J.D. de Leon, R. Obeso-Estrella, S. Fuentes, G. Alonso-Nuñez, B. Pawelec, J. Mol. Catal. A 397, 26 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Zhan, J. Yao, Z. Xiao, Y. Guo, Y. Wang, Y. Guo, G. Lu, Microporous Mesoporous Mater. 183, 150 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Abekawa, M. Ishino, JP2010150274-A (2010)Google Scholar
  17. 17.
    W.H. Onimus, B. Cooker, E. Morales, WO2005075443-A1 (2005)Google Scholar
  18. 18.
    L. Balducci, R. Ungarelli, ITMI961836-A1 (1998)Google Scholar
  19. 19.
    S.K. Kim, B.M. Reddy, S.E. Park, Ind. Eng. Chem. Res. 57, 3567 (2018)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, Q. Dai, W. Fu, T. Tang, P. Dong, M. He, Q. Chen, J. Catal. 359, 130 (2018)CrossRefGoogle Scholar
  21. 21.
    W. Wang, Y. Fu, Y. Guo, Y. Guo, X.Q. Gong, G. Lu, J. Mater. Sci. 53, 4034 (2018)CrossRefGoogle Scholar
  22. 22.
    L. Chen, Z. Deng, Y. Li, M. Sun, B. Su, CN104058423-A (2014)Google Scholar
  23. 23.
    X. Wang, G. Li, W. Wang, C. Jin, Y. Chen, Microporous Mesoporous Mater. 142, 494 (2011)CrossRefGoogle Scholar
  24. 24.
    R.J. White, A. Fischer, C. Goebel, A. Thomas, J. Am. Chem. Soc. 136, 2715 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Sanz, D.P. Serrano, P. Pizarro, I. Moreno, Chem. Eng. J. 171, 1428 (2011)CrossRefGoogle Scholar
  26. 26.
    D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, S. Medina, Appl. Catal. B 146, 35 (2014)CrossRefGoogle Scholar
  27. 27.
    D.P. Serrano, R. Sanz, P. Pizarro, I. Moreno, S. Shami, Microporous Mesoporous Mater. 189, 71 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Cheneviere, F. Chieux, V. Caps, A. Tuel, J. Catal. 269, 161 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Jiang, X. Li, S. Zhang, Y. He, G. Li, D. Li, K. Lin, Mater. Lett. 132, 270 (2014)CrossRefGoogle Scholar
  30. 30.
    J.C. Groen, J.C. Jansen, J.A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 108, 13062 (2004)CrossRefGoogle Scholar
  31. 31.
    Y. Wang, M. Lin, A. Tuel, Microporous Mesoporous Mater. 102, 80 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Lin, F. Xin, L. Yang, Z. Zhuang, Catal. Commun. 45, 104 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Wu, Y. Wang, T. Zhang, S. Wang, P. Yao, W. Feng, J. Xu, Catal. Commun. 50, 59 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Zuo, M. Liu, L. Hong, M. Wu, T. Zhang, M. Ma, X. Guo, Ind. Eng. Chem. Res. 54, 1513 (2015)CrossRefGoogle Scholar
  35. 35.
    A. Silvestre-Albero, A. Grau-Atienza, E. Serrano, J. Garcia-Martinez, J. Silvestre-Albero, Catal. Commun. 44, 35 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Lv, F. Wang, X. Zhang, B.P. Binks, Langmuir (2017)Google Scholar
  37. 37.
    J. Sonoda, T. Kamegawa, Y. Kuwahara, K. Mori, H. Yamashita, Bull. Chem. Soc. Jpn. 83, 592 (2010)CrossRefGoogle Scholar
  38. 38.
    R.M. Dessau, E.W. Valyocsik, N.H. Goeke, Zeolites 12, 776 (1992)CrossRefGoogle Scholar
  39. 39.
    G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spano, F. Rivetti, A. Zecchina, J. Am. Chem. Soc. 123, 11409 (2001)CrossRefGoogle Scholar
  40. 40.
    P.F. Henry, M.T. Weller, C.C. Wilson, J. Phys. Chem. B 105, 7452 (2001)CrossRefGoogle Scholar
  41. 41.
    R.R. Sever, R. Alcala, J.A. Dumesic, T.W. Root, Microporous Mesoporous Mater. 66, 53 (2003)CrossRefGoogle Scholar
  42. 42.
    J.C. Groen, J. Pérez-Ramírez, Appl. Catal. A 268, 121 (2004)CrossRefGoogle Scholar
  43. 43.
    S.B. Shin, D. Chadwick, Ind. Eng. Chem. Res. 49, 8125 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Baohe Wang
    • 1
  • Liang Lu
    • 1
  • Baomin Ge
    • 1
  • Shuang Chen
    • 1
    Email author
  • Jing Zhu
    • 1
  • Dongwei Wei
    • 1
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, Research and Development Center of Petrochemical TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations