Preparation of Na-alginate/CNTs composite spheres by dripping-gelatinization process and their enhanced adsorption of VB12 by freeze-casting

  • Xi Liu
  • Qianming Gong
  • Ming Zhao
  • Junfei Bai
  • Yilun Huang
  • Jianning Gan
  • Daming Zhuang
  • Yun Zhao
  • Ji Liang
Article
  • 11 Downloads

Abstract

In this study, sodium (Na)-alginate/carbon nanotubes (CNTs) composite spheres were synthesized by an energy-saving dripping–gelatinization method. With the combination of the good biocompatibility of Na-alginate and excellent adsorption properties of CNTs, the porous composite spheres turned out to be a promising candidate as an adsorbent in hemoperfusion. The adsorption results showed that the maximum adsorption capacity for VB12 was 21.6 mg/g for the as-prepared composite spheres with 60 wt% CNTs. Scanning electron microscopy observations indicated that a compact shell formed during the Na-alginate gelatinization, which restricted the potential adsorption capacity of CNTs, even though the ratio of CNTs increased further. An obvious enhancement of the adsorption capacity was achieved by a modified freeze-casting–gelatinization process. Specifically, the VB12 adsorption reached 40.6 mg/g, which was much higher than that of commercialized clinically used activated carbon and macroporous resin spheres (i.e., 14.0 and 15.3 mg/g, respectively). This dramatic improvement could be attributed to the hierarchical porous structure, a higher pore volume and porous shell acquired during the freeze-casting process. These hierarchical pores could not only provide a radial throughway for VB12 diffusion, but also create more adsorption sites, which were proved by Brunauer–Emmett–Teller and mercury porosimetry analyses.

Keywords

CNTs Sodium alginate Adsorption Freeze-casting Vitamin B12 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 51772165).

References

  1. 1.
    N. Patel, G.P. Bayliss, Adv. Drug Deliv. Rev. 90, 3 (2015)CrossRefGoogle Scholar
  2. 2.
    W.K. Cheah, K. Ishikawa, R. Othman, J. Biomed. Mater. Res. 105, 1232 (2016)CrossRefGoogle Scholar
  3. 3.
    D.J. Malik, G.L. Warwick, M. Venturi, M. Streat, K. Hellgardt, Biomaterials 24, 2933 (2004)CrossRefGoogle Scholar
  4. 4.
    C. Ye, Q.M. Gong, F.P. Lu, Acta Phys. Chim. Sin. 9, 1321 (2007)CrossRefGoogle Scholar
  5. 5.
    X.M. Ren, C.L. Chen, M. Nagatsu, Chem. Eng. J. 170, 395 (2011)CrossRefGoogle Scholar
  6. 6.
    G.P. Rao, C. Lu, F. Su, Sep. Purif. Technol. 58, 224 (2007)CrossRefGoogle Scholar
  7. 7.
    B. Pan, B.S. Xing, Environ. Sci. Technol. 42, 9005 (2008)CrossRefGoogle Scholar
  8. 8.
    S.M. Gatica, M.J. Bojan, G. Stan, J. Chem. Phys. 114, 3765 (2001)CrossRefGoogle Scholar
  9. 9.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface Sci. 6, 24 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Kondratyuk, J.T. Yates Jr., Chem. Phys. Lett. 410, 324 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Ye, Q.M. Gong, F.P. Lu, Sep. Purif. Technol. 58, 2 (2007)CrossRefGoogle Scholar
  12. 12.
    G.F. Li, J.X. Wan, X.Q. Huang, Q. Zeng, J. Tang, J. Biomed. Eng. 4, 758 (2011)Google Scholar
  13. 13.
    Y.M. Lu, Q.M. Gong, F.P. Lu, J. Mater. Sci.: Mater. Med. 22, 1855 (2011)Google Scholar
  14. 14.
    N.G. Sahoo, S. Rana, J.W. Cho, L. Li, S.H. Chan, Prog. Polym. Sci. 35, 837 (2010)CrossRefGoogle Scholar
  15. 15.
    P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Composites A 10, 1345 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Ye, Q.M. Gong, F.P. Lu, J. Liang, Sep. Purif. Technol. 1, 9 (2008)CrossRefGoogle Scholar
  17. 17.
    Y.M. Lu, Q.M. Gong, F.P. Lu, Acta Phys. Chim. Sin. 8, 1697 (2009)Google Scholar
  18. 18.
    S.D. Bhat, T.M. Aminabhavi, Sep. Purif. Technol. 51, 85 (2006)CrossRefGoogle Scholar
  19. 19.
    L. Li, Y. Fang, A. Rob Vreeker, I. Appelqvist, E. Mendes, Biomacromolecules 8(2), 464 (2007)CrossRefGoogle Scholar
  20. 20.
    J.J. Wang, Q.M. Gong, D.M. Zhuang, RSC Adv. 5, 16870 (2015)CrossRefGoogle Scholar
  21. 21.
    S.H. Park, K.H. Kim, K.C. Roh, K.B. Kim, J. Porous Mater. 20, 1289 (2013)CrossRefGoogle Scholar
  22. 22.
    Q.M. Ouyang, J. Gong, Liang, Adv. Eng. Mater. 4, 460 (2015)CrossRefGoogle Scholar
  23. 23.
    Q.H. Yang, P.X. Hou, X. Bai, Chem. Phys. Lett. 345, 18 (2001)CrossRefGoogle Scholar
  24. 24.
    B. Holland, J. Porous Mater. 10, 17 (2003)CrossRefGoogle Scholar
  25. 25.
    S. Motahari, F. Shayeganfar, M. Neek-Amal, Solid State Commun. 152, 225 (2012)CrossRefGoogle Scholar
  26. 26.
    Y.L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, J. Mech. Phys. Solids 56, 3224 (2008)CrossRefGoogle Scholar
  27. 27.
    B. Pan, B. Xing, Environ. Sci. Technol. 42, 9005 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.Key Laboratory for Advanced Materials Processing TechnologyMinistry of EducationBeijingPeople’s Republic of China
  5. 5.Department of Mechanical EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations