Study on the preparation of CdTe nanocrystals on the surface of mesoporous silica and evaluation as modifier of carbon paste electrodes

  • Sanny W. M. M. Carvalho
  • Charlene R. S. Matos
  • Tiago B. S. Santana
  • Anne M. G. P. Souza
  • Luiz P. Costa
  • Eliana M. Sussuchi
  • Iara F. GimenezEmail author


Here CdTe nanocrystals were grown onto mesoporous silicas. The influence of the surface areas, volumes and pore diameters of the silica matrices on the spectroscopic properties of CdTe was evaluated. Emission properties of the CdTe were found to depend on the textural properties of silicas. Electrochemical characterization of different electrodes (unmodified carbon paste, and carbon paste modified with the mesoporous silica and with CdTe anchored onto mesoporous silica) evidenced that the presence of CdTe nanocrystals lead to a significant increase of the anodic peak referring to Cu2+ detection. The electrode with optimal characteristics responded to Cu2+ in the linear range from 5.0 × 10−8 to 2.3 × 10−6 mol L−1 and the calculated limit of detection was 6.4 × 10−8 mol L−1. The method developed here proved to be efficient for monitoring Cu2+ in sugar cane spirit (cachaça), with quantitative results comparable to those obtained from Flame Atomic Absorbtion Spectroscopy.


Mesoporous silicas CdTe nanocrystals Electrochemical sensors 



The authors are grateful to Brazilian funding agencies CNPq and CAPES for their financial support. The authors also thank LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL JEM-2100F TEM microscope.


Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 304306/2016-9).

Supplementary material

10934_2018_717_MOESM1_ESM.docx (528 kb)
Supplementary material 1 (DOCX 527 KB)


  1. 1.
    C. Frigerio, D.S.M. Ribeiro, S.S.M. Rodrigues, V.L.R.G. Abreu, J.A.A. Barbosa, J.A.V. Prior, K.L. Marques, J.L.M. Santos, Anal. Chim. Acta 735, 9–22 (2012)CrossRefGoogle Scholar
  2. 2.
    V. Borse, M. Sadawana, R. Srivastava, Nanophotonics VI. 9884, 1–12 (2016)Google Scholar
  3. 3.
    E. Groeneveld: Synthesis and optical spectroscopy of (hetero)-nanocrystals. Ph.D. Thesis, Utrecht University, Utrecht, (2012)Google Scholar
  4. 4.
    J.C.L. Sousa, M.G. Vivas, J.L. Ferrari, C.R. Mendonça, M.A. Schiavon, RSC Adv. 4, 36024–36030 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Xu, X. Qi, X. Li, Y. Bai, H. Liu, Talanta 146, 714–726 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Liang, M. Liu, D. Zhou, H. Zou, Y. Liu, X. Zhang, B. Yanga, H. Zhang, RSC Adv. 7, 7774–7779 (2017)CrossRefGoogle Scholar
  7. 7.
    J.C. Santos, C.R.S. Matos, G.B.S. Pereira, T.B.S. Santana, H.O. Souza Jr., L.P. Costa, E.M. Sussuchi, A.M.G.P. Souza, I.F. Gimenez, Microporous Mesoporous Mater. 221, 48–57 (2016)CrossRefGoogle Scholar
  8. 8.
    X. Gao, S. Nie, J. Phys. Chem. B 107, 11575–11578 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Wang, B. Li, L. Dong, F. Zhang, M. Fan, L. Zhou, Mater. Lett. 135, 99–102 (2014)CrossRefGoogle Scholar
  10. 10.
    E.A. Turner, H. Ro, Y. Huang, J.F. Corrigan, J. Phys. Chem. C 111, 7319–7329 (2007)CrossRefGoogle Scholar
  11. 11.
    E.A. Turner, H. Rösner, D. Fenske, J.F. Corrigan, J. Phys. Chem. B 110, 16261–16269 (2006)CrossRefGoogle Scholar
  12. 12.
    E.A. Turner, Y. Huang, J.F. Corrigan, Eur. J. Inorg. Chem. 4465–4478 (2005)Google Scholar
  13. 13.
    R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita, K. Ogura, J. Phys. Chem. B 104, 12184–12191 (2000)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, S. Huang, S. Kang, C. Zhang, X. Li, Mater. Chem. Phys. 132, 1053–1059 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, Y. Wu, Food Chem. 213, 306–312 (2016)CrossRefGoogle Scholar
  16. 16.
    S.S. Voznesenskiy, A.A. Sergeev, I.V. Postnova, Y.A. Shchipunov, Phys. Proc. 86, 15–18 (2017)CrossRefGoogle Scholar
  17. 17.
    F.O. Silva, M.S. Carvalho, R. Mendonça, W.A.A. Macedo, K. Balzuweit, P. Reiss, M.A. Schiavon, Nanosc. Res. Lett. 7(536), 1–10 (2012)Google Scholar
  18. 18.
    O.A. Farghaly, R.S.A. Hameed, A.-A.H. Abu-Nawwas, Int. J. Electrochem. Sci. 9, 3287–3318 (2014)Google Scholar
  19. 19.
    H. Beitollahi, M. Hamzavi, M. Torkzadeh-Mahani, M. Shanesaz, H.K.A. Maleh, Electroanal. 27, 524–533 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Hua, H. Han, X. Zhang, Talanta 77, 1654–1659 (2009)CrossRefGoogle Scholar
  21. 21.
    C.M. Welch, R.G. Compton, Anal. Bioanal. Chem. 384, 601–619 (2006)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, Z. Li, T. Zhou, Q. Zhou, Z. Zeng, X. Xu, Y. Hu, Talanta 150, 184–189 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Sobrova, M. Ryvolova, J. Hubalek, V. Adam, R. Kizek, Int. J. Mol. Sci. 14, 13497–13510 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Wang, Analyst 130, 421–426 (2005)CrossRefGoogle Scholar
  25. 25.
    Q. Zhang, L. Zhang, B. Liu, X. Lu, J. Li, Biosens. Bioelectron. 23, 695–700 (2007)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, M. Fang, Nano Today 5, 128–142 (2010)CrossRefGoogle Scholar
  27. 27.
    J.M.F. Alvarez, I.G. Martinez, H.G. Bonilla, L.G. Ortiz, J.R. Gómez, Int. J. Electrochem. Sci. 11, 2066–2084 (2016)Google Scholar
  28. 28.
    L. Tang, M.A. Cai, Sens. Actuators B Chem. 173, 862–867 (2012)CrossRefGoogle Scholar
  29. 29.
    L.M. Zacaroni, Z.M. Magriotis, M.G. Cardoso, W.D. Santiago, J.G. Mendonça, S.S. Vieira, D.L. Nelson, Food Control 47, 536–544 (2015)CrossRefGoogle Scholar
  30. 30.
    S.A. Soares, S.S.L. Costa, R.G.O. Araujo, L.S.G. Teixeira, A.F. Dantas, J. AOAC Int. 101, 1–7 (2017)Google Scholar
  31. 31.
    K.D. Pessoa, W.T. Suarez, M.F. Reis, M.O.K. Franco, R.P.L. Moreira, V.B. Santos, Spectrochim. Acta A 185, 310–316 (2017)CrossRefGoogle Scholar
  32. 32.
    Brazil Ministry of Agriculture, Livestock and Supply (2005) Normative Instruction 13, Accessed 15 Aug 2017
  33. 33.
    J.C. Juan, J. Zhang, M.A. Yarmo, Appl. Catal. A 347, 133–141 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Sevilla, S. Alvarez, A.B. Fuertes, Microporous Mesoporous Mater. 74, 49–58 (2004)CrossRefGoogle Scholar
  35. 35.
    L. Guo, J. Li, L. Zhang, J. Li, Y. Li, C. Yu, J. Shi, M. Ruan, J. Feng, J. Mater. Chem. 18, 2733–2738 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Guari, C. Thieuleux, A. Mehdi, C. Reyé, R.J.P. Corriu, S. Gomez-Gallardo, K. Philippot, B. Chaudret, Chem. Mater. 15, 2017–2024 (2003)CrossRefGoogle Scholar
  37. 37.
    V.V. Ordomsky, V.Y. Murzin, Y.V. Monakhova, Y.V. Zubavichus, E.E. Knyazeva, N.S. Nesterenko, I.I. Ivanova, Microporous Mesoporous Mater. 105, 101–110 (2007)CrossRefGoogle Scholar
  38. 38.
    J.C. Groen, Mesoporous zeolites obtained by desilication (Proefschrift, TechnischeUniversiteit Delft, Delf, 2007)Google Scholar
  39. 39.
    D.W. Lee, S.J. Park, S.K. Ihm, K.H. Lee, Chem. Mater. 19, 937–941 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Takenaka, R. Takahashi, S. Sato, T. Sodesawa, F. Matsumoto, S. Yoshida, Microporous Mesoporous Mater. 59, 123–131 (2003)CrossRefGoogle Scholar
  41. 41.
    K. Venkatachalam, P. Visuvamithiran, B. Sundaravel, M. Palanichamy, V. Murugesan, Chin. J. Catal. 33, 478–486 (2012)CrossRefGoogle Scholar
  42. 42.
    T. Liu, G. Li, N. Zhang, Y. Chen, J. Hazard. Mater. 201–202, 155–161 (2012)CrossRefGoogle Scholar
  43. 43.
    G. Sartori, F. Bigi, R. Maggi, R. Satorio, D.J. Macquarrie, M. Lenard, L. Storano, S. Colluccia, G. Martra, J. Catal. 222, 410–418 (2004)CrossRefGoogle Scholar
  44. 44.
    K. Wei, W. Guo, C. Lai, N. Zhao, X. Li, J. Alloys Compd. 484, 841–845 (2009).CrossRefGoogle Scholar
  45. 45.
    S. Dong, M. Zhu, B. Dai, Synth. Green Sustain. Chem. 2, 8–13 (2012)CrossRefGoogle Scholar
  46. 46.
    W. Yu, C. Zhou, B. Zhang, X. Xu, Indian J. Chem. 47, 181–185 (2008)Google Scholar
  47. 47.
    B.R.C. Vale, K.O. Vieira, J.C.L. Sousa, J.L. Ferrari, M.A. Schiavon, Quim. Nova 38, 22–29 (2015)Google Scholar
  48. 48.
    H. Shao, C. Wang, R. Li, S. Xu, H. Zhang, Y. Cui, Chin. J. Chem. 30, 803–808 (2012)CrossRefGoogle Scholar
  49. 49.
    S.-H. Kim, W.-K. Han, J.-H. Lee, Curr. Appl. Phys. 10, S481–S483 (2010)CrossRefGoogle Scholar
  50. 50.
    C.R.S. Matos, H.O. Souza Jr., L.P.M. Candido, L.P. Costa, F.A. Santos, M.A.R.C. Alencar, L.M.G. Abegao, J.J. Rodrigues, E.M. Jr, I.F. Sussuchi, Gimenez, Mater. Res. Express 3, 065008 (2016)CrossRefGoogle Scholar
  51. 51.
    Y. Bae, N. Myung, A.J. Bard, Nano Lett. 4, 1153–1161 (2004)CrossRefGoogle Scholar
  52. 52.
    M.F. Bergamini, S.I. Vital, A.L. Santos, N.R. Stradiotto, Eclet. Quim. 31, 45–52 (2006)CrossRefGoogle Scholar
  53. 53.
    D.H. Silva, D.A. Costa, R.M. Takeuchi, A.L. Santos, J. Braz. Chem. Soc. 22, 1727–1735 (2011)CrossRefGoogle Scholar
  54. 54.
    F.N. Crespilho, M.O.O. Rezende, Quim. Nova 27, 964–969 (2004)CrossRefGoogle Scholar
  55. 55.
    P.R. Oliveira, A.C. Lamy-Mendes, E.I.P. Rezende, A.S. Mangrich, L.H. Marcolino Jr., M.F. Bergamini, Food Chem. 171, 426–431 (2015)CrossRefGoogle Scholar
  56. 56.
    D.A. Costa, R.M. Takeuchi, A.L. Santos, Int. J. Electrochem. Sci. 6, 6410–6423 (2011)Google Scholar
  57. 57.
    B.C. Janegitz, L.H. Marcolino Jr., O. Fatibello-Filho, Quim. Nova 30, 1673–1676 (2007)CrossRefGoogle Scholar
  58. 58.
    M. Soleimani, M.G. Afshar, Int. J. Electrochem. Sci. 8, 8719–8729 (2013)Google Scholar
  59. 59.
    M. Nasiri-Majd, M.A. Taher, H. Fazelirad, Ionics 22, 289–296 (2016)CrossRefGoogle Scholar
  60. 60.
    D.E. Popa, M. Buleandra, M. Mureseanu, M. Ionica, I.G. Tanase, Rev. Roum. Chim. 55, 123–130 (2010)Google Scholar
  61. 61.
    R. Hu, H. Gou, Z. Mo, X. Wei, Y. Wang, Ionics 21, 3125–3133 (2015)CrossRefGoogle Scholar
  62. 62.
    E.F.L. Tavares, L.L. Okummura, M.G. Cardoso, M.F. Oliveira, Z.M. Magriotis, A.A. Saczk, J. Braz. Chem. Soc. 23, 1614–1622 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sanny W. M. M. Carvalho
    • 1
  • Charlene R. S. Matos
    • 2
  • Tiago B. S. Santana
    • 3
  • Anne M. G. P. Souza
    • 1
  • Luiz P. Costa
    • 4
  • Eliana M. Sussuchi
    • 1
  • Iara F. Gimenez
    • 1
    • 5
    Email author
  1. 1.Postgraduate Program in ChemistryFederal University of SergipeSão CristóvãoBrazil
  2. 2.Postgraduate Program in Materials Science and EngineeringFederal University of SergipeSão CristóvãoBrazil
  3. 3.Department of PharmacyFederal University of SergipeSão CristóvãoBrazil
  4. 4.Postgraduate Program in Chemistry, Federal University of the State of Amazonas - UFAMManausBrazil
  5. 5.UFS – Cidade Universitária Prof. José Aloisio de CamposSão CristovãoBrazil

Personalised recommendations