Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A 50-year sediment record of algal assemblage changes in Hanabanilla Reservoir, Cuba

  • 19 Accesses


Hanabanilla Reservoir, south-central Cuba, is used for electric power generation, potable water supply and tourism. We examined stratigraphic shifts in algal assemblages that accumulated in the reservoir sediments from the time of construction in 1960 through 2012, and inferred the environmental drivers of such biological changes. Historical fluctuations in algal assemblages were driven by scouring of the reservoir bottom, changing water level, and input of organic matter and nitrogen to the water body. Stage records, in conjunction with algal counts, confirm the importance of the pennate/centric diatom ratio for reconstructing past water-level changes. Although nutrient and organic matter inputs to the reservoir also influenced algal abundance and community composition, our findings suggest that regulating reservoir hydrology could be an effective strategy for preventing future cyanobacterial blooms. Shifts in the relative abundances of algal taxa, and dominance of R strategists associated with extreme fluctuations in water level, showed the strong influence of hydrology as a determinant of primary producer assemblage structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Abonyi A (2015) Phytoplankton functional group composition along the River Loire (France). A limnological approach towards an understanding of phytoplankton longitudinal processes and ecological status indication (Doctoral dissertation, Pannon Egyetem)

  2. Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18:83–93

  3. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

  4. Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P (2008) The world of algae. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) Algal toxins: nature, occurrence, effect and detection. Springer, Dordrecht, pp 1–15

  5. Baskaran M, Miller CJ, Kumar A, Andersen E, Hui J, Selegean JP, Creech CT, Barkach J (2015) Sediment accumulation rates and sediment dynamics using five different methods in a well-constrained impoundment: case study from Union Lake, Michigan. J Great Lakes Res 41:607–617

  6. Blottiere L (2015) The effects of wind-induced mixing on the structure and functioning of shallow freshwater lakes in a context of global change (Doctoral dissertation). Biodiversity and Ecology. Université Paris-Saclay

  7. Borics G, Tothmeresz B, Grigorszky I, Padisak J, Varbyro G, Szabo S (2003) Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502:145–155

  8. Bouaïcha N, Corbel S (2016) Cyanobacterial toxins emerging contaminants in soils: a review of sources, fate and impacts on ecosystems, plants and animal and human health. In: Larramendy M (ed) Soil contamination-current consequences and further solutions. IntechOpen, London

  9. Bourrelly P (1972) Les Algues d’Eau Douce: Initiation à la Systématique (No. 582.26 BOU) N. Boubée/Cie. 511 pp

  10. Brunberg AK, Blomqvist P (2003) Recruitment of Microcystis (Cyanophyceae) from lake sediments: the importance of littoral inocula 1. J Phycol 39:58–63

  11. Çelik K, Ongun T (2006) Seasonal dynamics of phytoplankton assemblages across nutrient gradients in shallow hypertrophic Lake Manyas, Turkey. Lake Reservoir Manag 22:250–260

  12. Chapman DV (1996) Water Quality Assessments: a guide to the use of biota, sediments and water in environmental monitoring. World Health Organization, 2nd edn. Chapman and Hall, London, p 651

  13. Chellappa NT, Chellappa T, Câmara FR, Rocha O, Chellappa S (2009) Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnol Ecol Manag Inland Waters 39:273–282

  14. Clarke KR, Gorley RN (2015) User manual/tutorial. PRIMER-E, Plymouth

  15. Comas A (2008) Algunas características de la flora de algas y cianoprocariotas de agua dulce de Cuba. Boletín Soc Esp Ficología Algas 39:21–29

  16. Comas A, Labaut Y (2016) Informe Técnico sobre composición y abundancia del fitoplancton de los embalses Hanabanilla y Paso Bonito, Cuba Central. Proyecto 200-2002 MICACTIN: Archivo Centro de Estudios Ambientales de Cienfuegos. Ministerio de Ciencia, Tecnología y Medio Ambiente, Cuba

  17. Comas-González A, Labaut Y, Peraza R (2017) Ocurrencia de Limnoraphis robusta (Parakutty) Komárek et al. (Oscillatoriales, Cyanobacteria) en el embalse Hanabanilla (Cuba Central). In Anales de biología (No. 39). Servicio de Publicaciones, Universidad de Murcia, pp 1–6

  18. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

  19. Cronberg G (1986) Blue-green algae and chrysophyceae in sediment. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology, Lund, Sweden, pp 507–527

  20. Davidson TA, Reid MA, Sayer CD, Chilcott S (2013) Palaeolimnological records of shallow lake biodiversity change: exploring the merits of single versus multi-proxy approaches. J Paleolimnol 49:431–446

  21. Davie AW, Mitrovic SM, Lim RP (2012) Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inland Waters 2:89–100

  22. Díaz-Asencio M, Corcho-Alvarado JA, Cartas-Aguila H, Pulido-Caraballé A, Betancourt C, Smoak JM, Alvarez-Padilla E, Labaut-Betancourt Y, Alonso-Hernández C, Seisdedo-Losa M (2017) 210Pb and 137Cs as tracers of recent sedimentary processes in two water reservoirs in Cuba. J Environ Radioact 177:290–304

  23. Dodds WK (2002) Freshwater ecology: concepts and environmental applications. Elsevier, San Diego

  24. Fallon RD, Brock TD (1979) Decomposition of blue-green algal (cyanobacterial) blooms in Lake Mendota, Wisconsin. Appl Environ Microbiol 37:820–830

  25. Fernandes C, de Souza I, Barth OM, Guizan C (2002) Differential sedimentation of algae Chlorococcales (Scenedesmus, Coelastrum and Pediastrum) in Lagoa de Cima, Campos dos Goitacazes Municipality (Rio de Janeiro, Brazil). Pesqui Geocienc 29:65–75

  26. Fujimoto N, Sudo R, Sugiura N, Inamori Y (1997) Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N: P supply ratios and temperatures. Limnol Oceanogr 42:250–256

  27. GEOHAB (2006) Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems. In: Glibert P (ed) IOC and SCOR, Paris and Baltimore, 74 pp

  28. Guiry MD, Guiry GM (2018) AlgaeBase. World-wide Electron. Publ. Natl Univ. Ireland, Galway. http://www.algaebase.org. Searched on 17 Sept 2018

  29. Hart RC (2006) Phytoplankton dynamics and periodicity in two cascading warm-water reservoirs from 1989 to 1997—taxonomic and functional (C–S–R) patterns, and determining factors. Water SA 32:81–92

  30. Heaton L, Fullen MA, Bhattacharrya R (2016) Critical analysis of the van Bemmelen conversion factor used to convert soil organic matter data to soil organic carbon data: comparative analyses in a UK loamy sand soil. Espaço Aberto 6:35–44

  31. Krammer KY, Lange-Bertalot H (1986) Bacillariophyceae: Naviculaceae. In: Pascher A (ed) Die Süsswasserflora von Mitteleuropas. G. Fischer, vol 2/1, 855 pp

  32. Labaut Y, Betancourt CR, Díaz-Asencio M, Beutel MW (2018) Influence of dominant environmental processes in the tropical Cuban basin Hanabanilla and reservoir on sediment composition. Limnetica 37:297–309

  33. Lamberti GA, Moore JW (1984) Aquatic insects as primary consumers. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger Publishers, New York, pp 164–195

  34. Larocque I, Mazumder A, Proulx M, Lean DR, Pick FR (1996) Sedimentation of algae: relationships with biomass and size distribution. Can J Fish Aquat Sci 53:1133–1142

  35. Li Z, Shin HH, Lee T, Han MS (2015) Resting stages of freshwater algae from surface sediments in Paldang Dam Lake, Korea. Nova Hedwigia 101:475–500

  36. Lopes MRM, Ferragut C, Mattos Bicudo CED (2009) Phytoplankton diversity and strategies in regard to physical disturbances in a shallow, oligotrophic, tropical reservoir in Southeast Brazil. Limnetica 28:159–174

  37. Lund JWG (1966) The importance of turbulence in the periodicity of certain freshwater species of the genus Melosira. Botanicheskii Zhurnal SSSR 51:176–187

  38. Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VL (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559

  39. Martina LC, Principe R, Gari N (2013) Effect of a dam on epilithic algal communities of a mountain stream: before–after dam construction comparison. J Limnol 72:7

  40. Moldaenke C, Fang Y, Yang F, Dahlhaus A (2019) Early warning method for cyanobacteria toxin, taste and odor problems by the evaluation of fluorescence signals. Sci Total Environ 667:681–690

  41. Monchamp ME, Walser JC, Pomati F, Spaak P (2016) Sedimentary DNA reveals cyanobacteria community diversity over 200 years in two peri-alpine lakes. Appl Environ Microbiol 82:6472–6482

  42. Mur R, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: World Health Organization (ed) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E and FN Spon, London

  43. Naselli-Flores L (2000) Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. In: Reynolds CS, Dokulil M, Padisák J (eds) The trophic spectrum revisited. Springer, Dordrecht, pp 1–11

  44. Pham TL, Utsumi M (2018) An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag 213:520–529

  45. Quattrocchio ME (2009) Paleogene dinoflagellate cysts from Punta Prat, southern Chile. Palynology 33:141–156

  46. Reynolds CS (1987) Community organization in the freshwater plankton. In: Gee JHR, Giller PS (eds) Organization of communities, past and present. Blackwell Scientific Publications, Oxford, pp 297–325

  47. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

  48. Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015) A higher level classification of all living organisms. PLoS ONE 10:e0119248

  49. Sánchez R (2000) Informe técnico. Características del agua del embalse Hanabanilla. Departamento Provincial Recursos Hidráulicos en Villa Clara, 18 pp

  50. Sas H (1989) Lake Restoration by Reduction of Nutrient Loadings: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, Sant Augustin, Germany, 497 p

  51. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

  52. Takamura N, Otsuki A, Aizaki M, Nojiri Y (1992) Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch Hydrobiol 124:129–148

  53. Ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). www.canoco.com. Microcomputer Power (Ithaca, NY, USA), 500 pp

  54. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Internat Verein Limnol 9:1–38

  55. Vuorio K, Lepistö L, Holopainen AL (2007) Intercalibrations of freshwater phytoplankton analyses. Boreal Environ Res 12:561–569

  56. Winston B, Hausman S, Escobar J, Kenney WF (2014) A sediment record of trophic state change in an Arkansas (USA) reservoir. J Paleolimnol 51:393–403

  57. Wolin JA, Duthie HC (1999) Diatoms as indicators of water level change in freshwater lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 183–202

Download references


We thank the technicians and specialists of the Laboratory of Environmental Assays in the Centre of Environmental Studies of Cienfuegos (CEAC), the workers at Hanabanilla Reservoir, and the Institutes of Hydraulic Resources (INRH) of Villa Clara Province and Physical Planning (IPF) of Cienfuegos Province, Cuba. We also thank Mark Brenner and an anonymous reviewer for valuable comments on the manuscript, and Laura Castellanos (CEAC) for providing the site map. This study was financed by the Nuclear and Advanced Technologies Agency (AENTA) 200.2002 Project “Solutions to specific problems of integrated management of basins and coastal areas in Cuba, through isotopic and nuclear techniques: sea acidification, CO2 cycle and sequestration, toxic algal blooms, invasive species, environmental pollution, erosion-sedimentation-transport of nutrients and contaminants, eutrophication and water quality of reservoirs,” and the ARCAL CXXXIX (RLA7019/2014) Project “Developing indicators to determine the effect of pesticides, heavy metals and emerging contaminants on continental aquatic ecosystems important to agriculture and agroindustry” (FAO-IAEA).

Author information

Correspondence to Yeny Labaut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labaut, Y., Macchi, P.A., Comas, A.A. et al. A 50-year sediment record of algal assemblage changes in Hanabanilla Reservoir, Cuba. J Paleolimnol 63, 235–250 (2020). https://doi.org/10.1007/s10933-020-00113-5

Download citation


  • Reservoir
  • Sediment
  • Dam
  • Hydrodynamics
  • Aulacoseira
  • Microcystis