Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of climate variability on mercury deposition during the Older Dryas and Younger Dryas in the Venezuelan Andes


We present a high-resolution record of Late Glacial and Early Holocene mercury (Hg) accumulation within the sediments of Laguna de Los Anteojos, a small headwater alpine lake in Venezuela. Our sediment core spans the Older Dryas (OD) and Younger Dryas (YD) climate reversals, providing new insight into the effects of abrupt climatic transitions on atmospheric Hg deposition. Sediment Hg concentrations and accumulation rates (fluxes) increased sharply after regional deglaciation and then peaked immediately prior to onset of both the OD and YD. Mercury concentrations and fluxes then decreased through cold OD and YD conditions. Both Hg concentrations and fluxes increased rapidly with warming, rising two-fold in about 100 years after the OD and nearly four-fold in about 500 years during the latter-half of the YD. This lake-sediment record of Hg dynamics during the Glacial–Holocene transition suggests atmospheric Hg cycling is affected by abrupt climate change.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1

Source: Google Earth 2018

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abbott MB, Stafford TW Jr (1996) Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311. https://doi.org/10.1006/qres.1996.0031

  2. Ariya PA, Khalizov A, Gidas A (2002) Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications. J Phys Chem A 106:7310–7320. https://doi.org/10.1021/jp020719o

  3. Biester H, MartÍnez-Cortizas A, Birkenstock S, Kilian R (2003) Effect of peat decomposition and mass loss on historic mercury records in peat bogs from patagonia. Environ Sci Technol 37:32–39

  4. Biester H, Bindler R, MartÍnez-Cortizas A, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 114:4851–4860

  5. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. https://doi.org/10.1016/j.quageo.2010.01.002

  6. Bradbury JP, Leyden B, Salgado-Labouriau M, Lewis WM, Schubert C, Binford MW, Frey DG, Whitehead DR, Weibezahn FH (1981) Late quaternary environmental history of Lake Valencia, Venezuela. Science 214:1299–1305. https://doi.org/10.1126/science.214.4527.1299

  7. Broecker WS (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13:119–121. https://doi.org/10.1029/97PA03707

  8. Broecker WS (2006) Was the younger dryas triggered by a flood? Science 312:1146–1148. https://doi.org/10.1126/science.1123253

  9. Caldwell CA, Canavan CM, Bloom NS (2000) Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir. Sci Total Environ 260:125–133. https://doi.org/10.1016/S0048-9697(00)00554-4

  10. Cook KH, Vizy EK (2006) South American climate during the last glacial maximum: delayed onset of the South American monsoon. J Geophys Res Atmos 111:1–21. https://doi.org/10.1029/2005JD005980

  11. Cordeiro RC, Turcq B, Ribeiro MG, Lacerda LD, Capitâneo J, da Silva AO, Sifeddine A, Turcq PM (2002) Forest fire indicators and mercury deposition in an intense land use change region in the Brazilian Amazon (Alta Floresta, MT). Sci Total Environ 293:247–256

  12. D’Apolito C, Absy ML, Latrubesse EM (2013) The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quat Sci Rev 76:140–155. https://doi.org/10.1016/j.quascirev.2013.07.013

  13. Devesa-Rey R, Barral MT (2012) Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain). Environ Earth Sci 66:773–782

  14. Engstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH (2014) Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives. Environ Sci Technol 48:6533–6543. https://doi.org/10.1021/es405558e

  15. Gustin MS, Taylor GE, Maxey RA (1997) Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. J Geophys Res Atmos 102:3891–3898. https://doi.org/10.1029/96JD02742

  16. Hackley PC, Urbani F, Karlsen AW, Garrity CP (2005) Geologic shaded relief map of Venezuela. USGS Open-File Report 038

  17. Hermanns Y-M, Biester H (2013) Anthropogenic mercury signals in lake sediments from southernmost Patagonia, Chile. Sci Total Environ 445:126–135. https://doi.org/10.1016/j.scitotenv.2012.12.034

  18. Hughen KA (2004) Abrupt tropical vegetation response to rapid climate changes. Science 304:1955–1959. https://doi.org/10.1126/science.1092995

  19. Hughen KA, Southon JR, Lehman SJ, Overpeck JT (2000) Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1951–1954. https://doi.org/10.1126/science.290.5498.1951

  20. Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quat Sci Rev 28:2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009

  21. Kaser G, Osmaston H (2007) Tropical glaciers. Cambridge University Press, Cambridge

  22. Keeler GJ, Gratz LE, Al-wali K (2005) Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14:71–83

  23. Lacerda LD, Ribeiro MG, Cordeiro RC, Sifeddine A, Turcq B (1999) Atmospheric mercury deposition over Brazil during the past 30,000 years. Ciencia e Cultura 51:363–371

  24. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619. https://doi.org/10.1038/nature06763

  25. Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR (2002) Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. Global Biogeochem Cycles 16:1104–1109. https://doi.org/10.1029/2001GB001847

  26. Lea DW, Pak DK, Peterson LC, Hughen KA (2003) Synchroneity of tropical and high-latitude atlantic temperatures over the last glacial termination. Science 301:1361–1364. https://doi.org/10.1126/science.1088470

  27. Lindeberg C, Bindler R, Renberg I, Emteryd O, Karlsson E, Anderson NJ (2006) Natural fluctuations of mercury and lead in Greenland lake sediments. Environ Sci Technol 40:90–95

  28. Mackay D, Wania F, Schroeder WH (1995) Prospects for modeling the behavior and fate of mercury, globally and in aquatic systems. Water Air Soil Pollut 80:941–950. https://doi.org/10.1007/BF01189748

  29. Mahaney WC, Milner MW, Kalm V, Dirszowsky RW, Hancock RGV, Beukens RP (2008) Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. Geomorphology 96:199–211. https://doi.org/10.1016/j.geomorph.2007.08.002

  30. MartÍnez-Cortizas A, Pontevedra-Pombal X, García-Rodeja E, Nóvoa-Muñoz JC, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939–942. https://doi.org/10.1126/science.284.5416.939

  31. Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16:40-1–40-14. https://doi.org/10.1029/2001gb001440

  32. Meyers PA, Ishiwatari R (1993) The early diagenesis of organic matter in lacustrine sediments. In: Engel M, Macko SA (eds) Organic geochemistry, Plenum, New York, pp. 185–209

  33. Michelutti N, Lemmen JL, Cooke CA, Hobbs WO, Wolfe AP, Kurek J, Smol JP (2016) Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito. Ecuador J Limnol 75:275–286

  34. Monasterio M (1980) Las formaciones vegetales de los páramos de Venezuela. Estudios Ecológicos En Los Páramos Andinos. Editorial de la Universidad de Los Andes, Merida, Venezuela, pp 93–158

  35. Munthe J, Goodsite M (2011) Where does mercury in the Arctic environment come from, and how does it get there? Estuaries 1005000:2300–3400

  36. NOAA (2016) State of the Climate: Global Climate Report for February (2016) NOAA National Centers for Environmental Information

  37. Nriagu J, Becker C (2003) Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci Total Environ 304:3–12

  38. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan

  39. Pérez-Rodríguez M, Horák-Terra I, Rodríguez-Lado L, Aboal JR, MartÍnez-Cortizas A (2015) Long-term (∼ 57 ka) controls on mercury accumulation in the Southern Hemisphere reconstructed using a peat record from Pinheiro mire (Minas Gerais, Brazil). Environ Sci Technol 49:1356–1364. https://doi.org/10.1021/es504826d

  40. Peterson LC, Overpeck JT, Kipp NG, Imbrie J (1991) A high-resolution late quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6:99–119. https://doi.org/10.1029/90PA02497

  41. Polissar PJ, Abbott MB, Wolfe AP, Bezada M, Rull V, Bradley RS (2006) Solar modulation of Little Ice Age climate in the tropical Andes. PNAS 103:8937–8942

  42. Pompeani DP, Cooke CA, Abbott MB, Drevnick PE (2018) Climate, fire, and vegetation mediate mercury delivery to midlatitude lakes over the Holocene. Environ Sci Technol 52:8157–8164

  43. Poste AE, Muir DCG, Otu MK, Hall RI, Hecky RE (2012) Past and present mercury flux to a West African crater lake (Lake Bosomtwe/Bosumtwi, Ghana). Sci Total Environ 420:340–344. https://doi.org/10.1016/j.scitotenv.2012.01.022

  44. Power MJ (2013) A 21 000-year history of fire. In: Belcher CM (ed) Fire phenomena and the Earth system. Wiley, Oxford, pp 207–227. https://doi.org/10.1002/9781118529539.ch11

  45. Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP, Mayle FE, Ballouche A, Bradshaw RHW, Carcaillet C, Cordova C, Mooney S, Moreno PI, Prentice IC, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali AA, Anderson RS, Beer R, Behling H, Briles C, Brown KJ, Brunelle A, Bush M, Camill P, Chu GQ, Clark J, Colombaroli D, Connor S, Daniau A-L, Daniels M, Dodson J, Doughty E, Edwards ME, Finsinger W, Foster D, Frechette J, Gaillard M-J, Gavin DG, Gobet E, Haberle S, Hallett DJ, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong ZC, Larsen C, Long CJ, Lynch J, Lynch EA, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson DM, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard PJH, Rowe C, Sanchez Goñi MF, Shuman BN, Takahara H, Toney J, Turney C, Urrego-Sanchez DH, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang JH (2008) Changes in fire regimes since the last glacial maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30:887–907. https://doi.org/10.1007/s00382-007-0334-x

  46. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2011) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 Years cal BP. Radiocarbon 51:1111–1150

  47. Rodbell DT, Seltzer GO, Mark BG, Smith JA, Abbott MB (2008) Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quat Sci Rev 27:1612–1626. https://doi.org/10.1016/j.quascirev.2008.06.004

  48. Roos-Barraclough F, MartÍnez-Cortizas A, García-Rodeja E, Shotyk W (2002) A 14 500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. Earth Planet Sci Lett 202:435–451. https://doi.org/10.1016/S0012-821X(02)00805-1

  49. Rull V, Stansell ND, Montoya E, Bezada M, Abbott MB (2010) Palynological signal of the Younger Dryas in the tropical Venezuelan Andes. Quat Sci Rev 29:3045–3056. https://doi.org/10.1016/j.quascirev.2010.07.012

  50. Rull V, Montoya E, Vegas-Vilarrúbia T, Ballesteros T (2015) New insights on palaeofires and savannisation in northern South America. Quat Sci Rev 122:158–165. https://doi.org/10.1016/j.quascirev.2015.05.032

  51. Schubert C (1972) Geomorphology and glacier retreat in the Pico Bolívar area, Sierra Nevada de Mérida, Venezuela. Erdkunde 8:189–202

  52. Schubert C (1998). Glaciers of Venezuela, Glaciers of South America. USGS Professional Paper

  53. Schubert C, Clapperton CM (1990) Quaternary Glaciations in the northern Andes (Venezuela, Colombia and Ecuador). Quat Sci Rev 9:123–135. https://doi.org/10.1016/0277-3791(90)90014-2

  54. Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. J Geophys Res-Atmos 112:1–12. https://doi.org/10.1029/2007JD008746

  55. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63

  56. Simpson GL, Oksanen J (2018) Analogue: analogue matching and modern analogue technique transfer function models. (R package version 0.17-1). https://cran.r-project.org/package=analogue

  57. Stansell ND, Abbott MB, Rull V, Rodbell DT, Bezada M, Montoya E (2010) Abrupt Younger Dryas cooling in the northern tropics recorded in lake sediments from the Venezuelan Andes. Earth Planet Sci Lett 293:154–163. https://doi.org/10.1016/j.epsl.2010.02.040

  58. Steffen A, Schroeder W, Bottenheim J, Narayan J, Fuentes JD (2002) Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. Atmos Environ 36:2653–2661. https://doi.org/10.1016/S1352-2310(02)00112-7

  59. Stern GA, Macdonald RW, Outridge PM, Wilson S, Chételat J, Cole A, Hintelmann H, Loseto LL, Steffen A, Wang F, Zdanowicz C (2012) How does climate change influence arctic mercury? Sci Total Environ 414:22–42. https://doi.org/10.1016/j.scitotenv.2011.10.039

  60. Strode SA, Jaeglé L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, Mason RP, Slemr F (2007) Air–sea exchange in the global mercury cycle. Global Biogeochem Cycles 21:1–12. https://doi.org/10.1029/2006gb002766

  61. Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787

  62. USEPA (1998) Method 7473—mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry (No. SW-846-). US Environmental Protection Agency, Washington, D.C

  63. Vandal GM, Fitzgerald WF, Boutron CF, Candelone J-P (1993) Variations in mercury deposition to Antarctica over the past 34,000 years. Nature 362:621–623. https://doi.org/10.1038/362621a0

  64. Yang H, Engstrom DR, Rose NL (2010) Recent changes in atmospheric mercury deposition recorded in the sediments of remote equatorial lakes in the Rwenzori Mountains, Uganda. Environ Sci Technol 44:6570–6575. https://doi.org/10.1021/es101508p

Download references


This work was supported by grants from the Geological Society of America, University of Pittsburgh Center for Latin American Studies, National Science Foundation, P2C2 program (EAR-1003780). No conflict of interest is declared in this study. We thank Rebecca Hamilton and the journal reviewers for her helpful advice on this paper.

Author information

Correspondence to Larissa Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, L., Cooke, C.A., Stansell, N.D. et al. Effects of climate variability on mercury deposition during the Older Dryas and Younger Dryas in the Venezuelan Andes. J Paleolimnol 63, 211–224 (2020). https://doi.org/10.1007/s10933-020-00111-7

Download citation


  • Hg
  • Global warming
  • Anteojos
  • Younger Dryas
  • Older Dryas
  • Bølling
  • Allerød