Advertisement

Post-colonial pollution of the Bay of Cartagena, Colombia

  • Yuliana Serna
  • Alexander Correa-Metrio
  • William Francis Kenney
  • Jason Hillary Curtis
  • Maria Isabel Velez
  • Mark Brenner
  • Natalia Hoyos
  • Juan Camilo Restrepo
  • Cecilia Cordero-Oviedo
  • David Buck
  • Nancy Suarez
  • Jaime EscobarEmail author
Original paper
  • 41 Downloads

Abstract

The city of Cartagena, Colombia, was founded in 1533, making it the fifth oldest, continuously inhabitated colonial city in South America. Today, Cartagena is the fifth largest city in Colombia, with ~ 1.2 million inhabitants. Las Quintas Lagoon lies near the center of Cartagena and is connected hydrologically to the Bay of Cartagena and Las Virgenes Lagoon via channels. The sediments of Las Quintas Lagoon thus offer a unique opportunity to explore the environmental history of one of the oldest cities in South America. We analysed a 210Pb- and 14C-dated sediment core from Las Quintas Lagoon to investigate the environmental effects of long-term urban development in this tropical, estuarine setting. The sediment core from Las Quintas Lagoon displays evidence of change in the depositional environment during the last few centuries. Principal Component Analysis indicated relatively stable conditions in Las Quintas Lagoon from the begining of the record (about 1300 CE) until ca. 1900 CE, when the ongoing eutrophication began. PC1 shows statistical significance and was dominated by geochemical indicators, whereas PC2 correlated with pollen spectra. Upcore decreases in TOC/TN values, together with increases in TOC, TN and δ15N values, indicate greater autochthonous (i.e. phytoplankton) production and eutrophication. Lack of statistical significance of PC2 points to low variability among pollen spectra, and hence vegetation, through time. Diatom assemblages in the Las Quintas Lagoon sediment record display two shifts during the last 100 years, ca. 1940 and 2000, which also reflect progressive eutrophication of the system.

Keywords

Urban pollution Caribbean lagoon Paleolimnology Anthropocene Sediments 

Notes

Acknowledgements

This research was funded partially by a grant from the Inter-American Institute for Global Change Research (IAI) CRN3038, which is supported by the US National Science Foundation (Grant GEO-1128040). J Escobar and N Hoyos were funded partially by Canadian Queen Elizabeth II Diamond Jubilee Scholarships (QES), a partnership among Universities in Canada, the Rideau Hall Foundation (RHF), and Community Foundations of Canada (CFC). The QES is made possible with financial support from the International Development Research Centre and Social Sciences and Humanities Research Council of Canada. N Hoyos was supported partially by the Fulbright Visiting Scholar Program.

Supplementary material

10933_2019_101_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
10933_2019_101_MOESM2_ESM.pdf (129 kb)
Supplementary material 2 (PDF 128 kb)

References

  1. Aguilera M, Meisel A (2009) Tres siglos de historia demografica de Cartagena de Indias. Banco de la Republica, BogotaGoogle Scholar
  2. Alonso D, Pineda P, Olivero J, Gonzalez Campos N (2000) Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Cienaga Grande de Santa Marta, Colombia. Environ Pollut 109:157–163CrossRefGoogle Scholar
  3. Appleby PG, Oldield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35CrossRefGoogle Scholar
  4. Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 143:21–27CrossRefGoogle Scholar
  5. Arnold TE, Kenney WF, Curtis JH, Bianchi TS, Brenner M (2018) Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake. PLoS ONE 13(9):e0203801CrossRefGoogle Scholar
  6. Behling H, Hooghiemstra H (1999) Environmental history of the Colombian savannas of the Llanos Orientales since the last Glacial maximum from lake records El Pinal and Carimagua. J Paleolimnol 21:461–476CrossRefGoogle Scholar
  7. Bennion H, Simpson G (2011) The use of diatom records to establish reference conditions of UK lake subject to eutrophication. J Paleolimnol 45:469–488CrossRefGoogle Scholar
  8. Berrio JC, Hooghiemstra H, Behling H, BoteroP Van, der Borg K (2002) Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12:35–48Google Scholar
  9. Bindler R, Rydberg J, Renberg I (2011) Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J Paleolimnol 45:519–531CrossRefGoogle Scholar
  10. Blaauw M, Christen J (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474Google Scholar
  11. Burel T, Vernette G (1981) Evidencias de cambios del nivel del mar en el Cuaternario de la región de Cartagena. CIAF 6:77–92Google Scholar
  12. Burić Z, Kiss K, Ács E, Viličić D, Mihalić CK, Carić M (2007) The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana Prasad in a Croatian estuary. Nova Hedwigia 84:135–153CrossRefGoogle Scholar
  13. Caycedo IE (1977) Fitoplancton de la Bahia de Neguange (Parque Nacional Tayrona) Mar Caribe, Colombia. Anales Inst Invest Marinas Punta Betín 9:17–44Google Scholar
  14. Clement RM, Horn SP (2001) Pre-Columbian land-use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene 11:419–426CrossRefGoogle Scholar
  15. Costa-Böddeker S, Bennion H, Araujo de Jesus T, Albuquerque ALS, Figueira RCL, Bicudo DC (2012) Paleolimnologically inferred eutrophication of a shallow, tropical, urban reservoir in southeast Brazil. J Paleolimnol 48:751–766CrossRefGoogle Scholar
  16. Curtis JH, Brenner M, Hodell DA, Balser RA, Islebe GA, Hooghiemstra H (1998) A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. J Paleolimnol 19:139–159CrossRefGoogle Scholar
  17. Deevey ES, Rice DS, Rice PM, Vaughan HH, Brenner M, Flannery MS (1979) Mayan urbanism: impact on a tropical karst environment. Science 206:298–306CrossRefGoogle Scholar
  18. Diatoms of North America. https://westerndiatoms.colorado.edu/
  19. Escobar J, Whitmore TJ, Kamenov GD, Riedinger-Whitmore MA (2013) Isotope record of anthropogenic lead pollution in lake sediments of Florida, USA. J Paleolimnol 49:237–252CrossRefGoogle Scholar
  20. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  21. Fisher MM, Brenner M, Reddy KR (1992) A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J Paleolimnol 7:157–161CrossRefGoogle Scholar
  22. Genkal SI (2012) Morphology, taxonomy, ecology and distribution of Cyclotella choctawhatcheeana Prasad (Bacillariophyta). Inland Water Biol 5:169–177CrossRefGoogle Scholar
  23. Grimm E (1987) CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computat Geosci 13:13–35CrossRefGoogle Scholar
  24. Heusser LE, Stock CE (1984) Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Palynology 8:225–227CrossRefGoogle Scholar
  25. Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Mo Bot Gard 93:297–324CrossRefGoogle Scholar
  26. INVEMAR (2016) Informe sobre la caracterizacion biofisica y socieconomica rapida de las condiciones ambientales de la Cienaga de las Quintas, Cartagena, Bolivar. Editorial Invemar, Santa MartaGoogle Scholar
  27. Irion G, Bush MB, Nunes de Mello JA, Stüben D, Neumann T, Müller G, de Morais JO, Junk JWA (2006) A multiproxy record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeogr Palaeocl 240:523–535CrossRefGoogle Scholar
  28. Islebe GA, Hooghiemstra H, Brenner M, Curtis JH, Hodell DA (1996) A Holocene vegetation history from lowland Guatemala. Holocene 6:265–271CrossRefGoogle Scholar
  29. Jones J (2013). Ctenophora pulchella. In Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/species/ctenophora_pulchella. Accessed 07 Feb 2018
  30. Kenney WF, Waters MN, Schelske CL (2002) Sediment records of phosphorus driven shifts to phytoplankton dominance in shallow Florida Lakes. J Paleolimnol 27:367–377CrossRefGoogle Scholar
  31. Kenney WF, Brenner M, Curtis JH, Schelske CL (2010) Identifying sources of organic matter in sediments of shallow lakes using multiple geochemical variables. J Paleolimnol 44:1039–1052CrossRefGoogle Scholar
  32. Kenney WF, Whitmore TJ, Buck DG, Brenner M, Curtis JH, Di JJ, Schelske CL (2014) Whole-basin, mass-balance approach for identifying critical phosphorus-loading thresholds in shallow lakes. J Paleolimnol 51:515–528CrossRefGoogle Scholar
  33. Kenney WF, Brenner M, Curtis JH, Arnold TE, Schelske CL (2016) A Holocene sediment record of phosphorus accumulation in shallow Lake Harris, Florida (USA) offers news perspectives on recent cultural eutrophication. PLoS ONE 11:e0147331CrossRefGoogle Scholar
  34. Kilham S, Theriot E, Fritz S (1996) Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol Oceanogr 41:1052–1062CrossRefGoogle Scholar
  35. Krammer K, Lange-Bertalot H (2000) Su¨sswasserflora von Mitteleuropa. Bacillariophyceae, vol 1 part 3. Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher Verlag, Jena-StuttgartGoogle Scholar
  36. Krishnaswamy S, Lal D, Martin J, Meybeck M (1971) Geochronology of lake sediments. Earth Plant Sci Let 11:407–414CrossRefGoogle Scholar
  37. Krukowski ST (1988) Sodium metatungstate; a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. J Paleontol 62:314–316CrossRefGoogle Scholar
  38. Laird K, Cummin B, Wunsam S, Rusak J, Oglesby R, Fritz S, Leavitt P (2003) Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proc Nat Acad Sci (USA) 100:2483–2488CrossRefGoogle Scholar
  39. Leble S, Cuignon R (1987) El archipiélago de las islas del Rosario, estudio morfológico, hidrodinámico y sedimentológico. Bol Cientifico CIOH 7:37–52CrossRefGoogle Scholar
  40. Legendre P, Legendre L (2012) Numerical ecology. Elsevier Scientific, OxfordGoogle Scholar
  41. Leyden BW (1987) Man and climate in the Maya Lowlands. Quat Res 28:407–414CrossRefGoogle Scholar
  42. Lozano-Duque Y, Vidal LA, Navas G (2010) Listado de diatomeas (bacillariophyta) registradas para el mar Caribe colombiano. Bol de Invest Mar Cost 39:83–116Google Scholar
  43. Martínez JI, Yokoyama Y, Gómez A, Delgado A, Matsuzaki H, Rendón E (2010) Late Holocene marine terraces of the Cartagena región, southern Caribbean: the product of neotectonism or a former high stand in sea-level? J S Am Earth Sci 29:214–224CrossRefGoogle Scholar
  44. Merilänen JJ, Hynynen J, Palomäki A, Mäntykoski K, Witick A (2003) Environmental history of an urban lake: a paleolimnological study of Lake Jyväsjärvi, Finland. J Paleolimnol 30:387–406CrossRefGoogle Scholar
  45. Mesa O, Poveda G, Carvajal L (1997) Introduccion al Clima de Colombia. Universidad Nacional de Colombia, Bogota, p 390pGoogle Scholar
  46. Parga-Lozano CH, Marrugo-Gonzalez AJ, Fernandez-Maestre R (2002) Hydrocarbon contamination in Cartagena Bay, Colombia. Mar Pollut Bull 44:71–74CrossRefGoogle Scholar
  47. Pizarro V, Rodríguez S, Lovez-Viloria M, Zapata F, Zea S, Galindo-Martínez C, Iglesias-Prieto R, Pollock J, Medina M (2017) Unraveling the structure and composition of Varadero Reef, an improbable and imperiled coral reef in the Colombian Caribbean. Peer J 5:e4119CrossRefGoogle Scholar
  48. Prasad A, Nienow J (2006) Centric diatom genus Cyclotella, (Stephanodiscaceae: Bacillariophyta) from Florida Bay, USA, with special reference to Cyclotella choctawhatcheeana and Cyclotella desikacharyi, a new marine species related to the Cyclotella striata complex. Phycologia 45:124–140CrossRefGoogle Scholar
  49. PNUMA, Alcaldía de Cartagena de Indias, EPA Cartagena, Observatorio del Caribe Colombiano (2009) Perspectivas del Medio Ambiente Urbano: Geo Cartagena. Observatorio del Caribe, CartagenaGoogle Scholar
  50. Reavie E, Edlund M, Andresen N, Engstrom D, Leavitt P, Schottler S, Cai M (2017) Paleolimnology of the Lake of the Woods southern basin: continued water quality degradation despite lower nutrient influx. Lake Reserv Manag 33:369–385CrossRefGoogle Scholar
  51. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  52. Restrepo JC, Franco D, Correa I, Escobar J, Otero L, Gutiérrez J (2013) Cartagena Bay (Colombia): sedimentary environments and superficial sediments distribution. Lat Am J Aquat Res 41:99–112CrossRefGoogle Scholar
  53. Restrepo JC, Ortíz JC, Pierini J, Schrottke K, Maza M, Otero L, Aguirre J (2014) Freshwater discharge into the Caribbean Sea from the rivers of northwestern South America (Colombia): magnitude, variability and recent changes. J Hydrol 509:266–281CrossRefGoogle Scholar
  54. Restrepo JC, Escobar J, Otero L, Franco D, Pierini J, Correa I (2017) Factors influencing the distribution and characteristics of surface sediment in the Bay of Cartagena, Colombia. J Coastal Res 33:135–148CrossRefGoogle Scholar
  55. Riedinger-Whitmore MA, Whitmore TJ, Smoak JM, Brenner M, Moore A, Curtis J, Schelske CL (2005) Cyanobacterial proliferation is a recent response to eutrophication in many Florida lakes: a paleolimnological assessment. Lake Reserv Manag 21:423–435CrossRefGoogle Scholar
  56. Schelske CL, Peplow A, Brenner M, Spencer CN (1994) Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10:115–128CrossRefGoogle Scholar
  57. Schelske CL, Lowe EF, Battoe LE, Brenner M, Coveney MF, Kenney WF (2005) Abrupt biological response to hydrologic and land-use changes in Lake Apopka, Florida, USA. Ambio 32:192–198CrossRefGoogle Scholar
  58. Smol JP (2010) The power of the past: using lake sediments to track the effects of ultiple stressors on lake ecosystems. Freshwater Biol 55:43–59CrossRefGoogle Scholar
  59. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans overwhelming the great forces of nature? Ambio 36:614–621CrossRefGoogle Scholar
  60. Steffen W, Grinevald J, Crutzen P, McNeill J (2011) Anthropocene: conceptual and historical perspectives. Philos T R Soc A 369:842–867CrossRefGoogle Scholar
  61. Stockmarr J (1972) Tablets with spores used in absolute pollen analysis. Pollen et Spore XIII:615–621Google Scholar
  62. Tosic M, Restrepo JD, Lonin S, Izquierdo A, Martins F (2019) Water and sediment quality in Cartagena Bay, Colombia: seasonal variability and potential impacts of pollution. Estuar Coast Shelf Sci 216:187–203CrossRefGoogle Scholar
  63. UNOPS (United Nations Office for Project Services)—Alcaldía de Cartagena (1998) Planificación y manejo de bahía fuertemente contaminada del Gran Caribe. Bahía de Cartagena. Cartagena, Estudio de casoGoogle Scholar
  64. Urrego LE, Correa-Metrio A, González C, Castaño AR, Yokoyama Y (2013) Contrasting responses of two Caribbean mangroves to sea-level rise in the Guajira Peninsula (Colombian Caribbean). Palaeogeogr Palaeocl 370:92–102CrossRefGoogle Scholar
  65. UTB (2009) Mercado de Bazurto: Como gestionar el cambio?. Ediciones Tecnológica de Bolivar, CartagenaGoogle Scholar
  66. Velez MI, Berrio JC, Hooghiemstra H, Metcalfe S, Marchant R (2005) Palaeoenvironmental changes during the last ca. 8590 calibrated yr (7800 radiocarbon yr) in the dry forest ecosystem of the Patia Valley, Southern Colombia Andes: a multiproxy approach. Palaeogeogr Palaeocl 216:279–302CrossRefGoogle Scholar
  67. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I. Iconographia Diatomologica vol 7. Koeltz Scientific Books, KönigsteinGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yuliana Serna
    • 1
  • Alexander Correa-Metrio
    • 2
  • William Francis Kenney
    • 3
  • Jason Hillary Curtis
    • 4
  • Maria Isabel Velez
    • 5
  • Mark Brenner
    • 4
  • Natalia Hoyos
    • 6
  • Juan Camilo Restrepo
    • 1
  • Cecilia Cordero-Oviedo
    • 7
  • David Buck
    • 8
  • Nancy Suarez
    • 9
  • Jaime Escobar
    • 10
    • 11
    Email author
  1. 1.Departamento de Fisica y GeologiaUniversidad del NorteBarranquillaColombia
  2. 2.Instituto de GeologiaUniversidad Nacional Autonoma de MexicoCoyoacán, Mexico D.F.Mexico
  3. 3.Land Use and Environmental Change InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Department of Geological Sciences, and Land Use and Environmental Change InstituteUniversity of FloridaGainesvilleUSA
  5. 5.Department of GeologyUniversity of ReginaReginaCanada
  6. 6.Departamento de Historia y Ciencias SocialesUniversidad del NorteBarranquillaColombia
  7. 7.Posgrado en Ciencias de la TierraUniversidad Nacional Autonoma de MexicoCoyoacán, Mexico D.F.Mexico
  8. 8.School of Marine Science and Ocean EngineeringUniversity of New HampshireDurhamUSA
  9. 9.Instituto de Ciencias del Mar y LimnologiaUniversidad Autonoma de MexicoMazatlánMexico
  10. 10.Departamento de Ingenieria Civil y AmbientalUniversidad del NorteBarranquillaColombia
  11. 11.Center for Tropical Paleoecology and ArchaeologySmithsonian Tropical Research InstituteBalboaPanama

Personalised recommendations