Journal of Paleolimnology

, Volume 62, Issue 4, pp 373–388 | Cite as

Water-level change recorded in Lake Pac Chen Quintana Roo, Mexico infers connection with the aquifer and response to Holocene sea-level rise and Classic Maya droughts

  • Anya Krywy-JanzenEmail author
  • Eduard Reinhardt
  • Chelsi McNeill-Jewer
  • Aaron Coutino
  • Brenda Waltham
  • Marek Stastna
  • Dominique Rissolo
  • Sam Meacham
  • Peter van Hengstum
Original paper


Pac Chen Lake is located on the Yucatan Peninsula, Mexico and is ~ 42 km from the coast and ~ 22 km NE of Coba. It has an area of ~ 36,735 m2 and maximum depth of 25 m. Four sediment cores along a depth transect provide a 4-ka record of the evolution of the eastern deep basin (core PC1 at 25 m depth) and the shallow margin (cores PC2–4 at 0.25–5 m depth). PC1 shows the effect of water-level rise and flooding of the shallow margin (2.8–1.8 ka) through a lithological (organic to carbonate) and geochemical (μXRF; decreased Ti, Fe, K and Ca) change along with a reduction in sediment accumulation (~ 0.2927 to 0.0343 cm year−1). This change in sedimentation matches basal ages of PC2 and PC4 at 2.5 and 1.8 ka respectively, indicating water-level rise and flooding of the shallowly sloped margin which is within estimates of Holocene sea-level rise thus indicating connection with the aquifer. Corroborating evidence for connection with the aquifer comes from water-level monitoring (30 min intervals; 6 months December 12, 2018 to June 6, 2019) which shows a semi-diurnal tidal fluctuation (1–1.5 cm). Droughts have been thoroughly discussed as a proponent of the decline of the Classic Maya, with lakes being inferred to be isolated from the aquifer and experiencing water level drawdown. However, during the Classic Maya droughts lake drawdown in Pac Chen would be minimal, and there is no evidence of a water level drop in our lake margin stratigraphy (PC2–4). Water mass characteristics measured in March 2016 (temperature, conductivity) indicate some hydrological isolation from the aquifer. This isolation would have allowed for recording of environmental changes, but also likely changed through time as flooding of the lake progressed. The shallow margin core PC4, however, recorded several rapid drops in K and Fe from ~ 1100 to 975, and 925–875 yr BP, which we interpret as periods of reduced inputs of terrigenous weathering during times of reduced rainfall and runoff. These periods are consistent with other regional paleoclimate records (lake and speleothem) of the Classic Maya droughts (1200–850 yr BP).


Yucatan Lake level change Hydrology Aquifer Sea level Holocene Classic Maya droughts 



The authors would like to thank Zero Gravity Dive Center and the Mexican Cave Exploration Project for dive support and logistics (esp. Fred Devos and Christophe LeMaillot). Special thanks to the owner Carlos Marín and Fabián Arriaga of Alltournative SA de CV for allowing access to the Pac Chen facility. Funding was provided by National Sciences and Engineering Research Council of Canada Discovery Grants (EGR—RGPIN/05725-2015, MS—RGPIN/37157-2015), National Science Foundation (Grant No. 1703087) and Canada Foundation for Innovation John R. Evans Leaders Fund (EGR—105-04523).

Supplementary material

10933_2019_94_MOESM1_ESM.docx (351 kb)
Supplementary material 1 (DOCX 350 kb)
10933_2019_94_MOESM2_ESM.docx (341 kb)
Supplementary material 2 (DOCX 341 kb)
10933_2019_94_MOESM3_ESM.docx (397 kb)
Supplementary material 3 (DOCX 397 kb)
10933_2019_94_MOESM4_ESM.docx (481 kb)
Supplementary material 4 (DOCX 480 kb)
10933_2019_94_MOESM5_ESM.docx (308 kb)
Supplementary material 5 (DOCX 307 kb)
10933_2019_94_MOESM6_ESM.docx (339 kb)
Supplementary material 6 (DOCX 339 kb)
10933_2019_94_MOESM7_ESM.docx (176 kb)
Supplementary material 7 (DOCX 175 kb)


  1. Anselmetti FS, Ariztegui D, Hodell DA, Hillesheim MB, Brenner M, Gilli A, McKenzie JA, Mueller AD (2006) Late Quaternary climate-induced lake level variations in Lake Peten Itza, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeogr Palaeoclimatol Palaeoecol 230:52–69Google Scholar
  2. Battistel D, Roman M, Marchetti A, Kehrwald N, Radaelli M, Balliana E, Toscano G, Barbante C (2018) Anthropogenic impact in the Maya Lowlands of Petén, Guatemala, during the last 5500 years. J Quat Sci 33:166–176Google Scholar
  3. Bauer-Gottwein P, Gondwe BRN, Charvet G, Marin LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: the Yucatan Peninsula karst aquifer, Mexico. J Hydrol 19:507–524Google Scholar
  4. Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean coast of the Yucatán Peninsula, México (Doctoral dissertation, University of Bristol)Google Scholar
  5. Beddows P, Smart P, Whitaker F, Smith S (2007) Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: spatial patterns of temperature and specific electrical conductivity. J Hydrol 346:18–32Google Scholar
  6. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474Google Scholar
  7. Brenner M, Hodell D, Curtis J, Rosenmeier M, Binford M, Abbott M (2001) Abrupt climate change and pre-Columbian cultural collapse. In: Marvgraf V (ed) Interhemispheric climate linkages. Academic Press, San Diego, pp 87–103Google Scholar
  8. Brenner M, Rosenmeier M, Hodell D, Curtis J (2002) Paleolimnology of the Maya Lowlands: long-term perspectives on interactions among climate, environment, and humans. Anc Mesoam 13:141–157Google Scholar
  9. Collins S, Reinhardt E, Rissolo D, Chatters J, Nava Blank A, Luna Erreguerena P (2015) Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico, implications for early Paleoamerican and faunal access. Quat Sci Rev 124:68–83Google Scholar
  10. Costanza R, Graumlich L, Steffen W, Crumley C, Dearing J, Hibbard K, Leemans R, Redman C, Schimel D (2009) Sustainability or collapse: What can we learn from integrating the history of humans and the rest of nature? Ambio 36:522–527Google Scholar
  11. Coutino A, Statsna M, Kovacs S, Reinhardt E (2017) Hurricanes Ingrid and Manuel (2013) and their impact on the salinity of the Meteoric Water Mass, Quintana Roo, Mexico. J Hydrol 551:715–729Google Scholar
  12. Curtis J, Hodell D, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. J Quat Res 46:37–47Google Scholar
  13. Douglas PMJ, Brenner M, Curtis JH (2016) Methods and future directions for paleoclimatology in the Maya Lowlands. Glob Planet Change 138:3–24Google Scholar
  14. Fetter CW (1988) Applied hydrogeology. Merrill Publishing Company, ColumbusGoogle Scholar
  15. Gabriel J, Reinhardt E, Peros M, Davidson D, van Hengstum P, Beddows P (2008) Paleoenvironmental evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to Holocene sea-level rise. J Paleolimnol 42:199–213Google Scholar
  16. Gregory B, Reinhardt E, Gifford J (2017a) The influence of morphology on sinkhole sedimentation at Little Salt Spring, Florida. J Coast Res 33:359–371Google Scholar
  17. Gregory BRB, Reinhardt EG, Macumber AL, Nasser NA, Patterson T, Kovacs SE, Galloway JM (2017b) Sequential sample reservoirs for Itrax-XRF analysis of discrete samples. J Paleolimnol 57:287–293Google Scholar
  18. Hastenrath S, Polzin D (2013) Climatic variations in Central America and the Caribbean. Int J Climatol 33:1348–1356Google Scholar
  19. Hillesheim MB, Hodell DA, Leyden BW, Brenner M, Curtis JH, Anselmetti FS, Ariztegui D, Buck DG, Guilderson TP, Rosenmeier MF, Schnurrenberger DW (2005) Lowland neotropical climate change during the late deglacial and early Holocene. J Quat Sci 20:363–376Google Scholar
  20. Hodell D, Curtis J, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394Google Scholar
  21. Hodell D, Brenner M, Curtis J (2005a) Terminal classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev 24:1413–1427Google Scholar
  22. Hodell D, Brenner M, Curtis J, Medina-Gonzales R, Ildefonso-Chan Can E, Albornaz-Pat A, Guilderson T (2005b) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121Google Scholar
  23. Jouve G, Francus P, Lamoureux S, Provencher-Nolet L, Hanh A, Habberzettl T, Fortin D, Nuttin L, The PASADO, Team Science (2013) Microsedimentological characterization using image analysis and m-XRF as indicators of sedimentary processes and climate changes during Lateglacial at Laguna Potrok Aike, Santa Cruz, Argentina. Quat Sci Rev 71:191–204Google Scholar
  24. Kennett D, Brietenbach S, Aquino V, Asmerom Y, Awe J, Baldini J, Bartlein P, Culleton B, Ebert C, Jazwa C, Macri M, Marwan N, Polyak V, Prufer K, Ridlel H, Sodemann H, Winterhalder B, Haug G (2012) Development and disintegration of Maya political systems in response to climate change. Science 338:788–791Google Scholar
  25. Khan N, Ashe E, Horton B, Dutton A, Kopp R, Brocard G, Englehart S, Hill D, Peltier W, Vane C, Scatena F (2017) Drivers of Holocene sea-level change in the Caribbean. Quat Sci Rev 155:13–36Google Scholar
  26. Kovacs S, Reinhardt E, Chatters J, Rissolo D, Schwarcz H, Collins S, Kim ST, Nava Blank A, Luna Erreguerena P (2017a) Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico. Quat Sci Rev 10:205–214Google Scholar
  27. Kovacs S, Reinhardt E, Statsna M, Coutino A, Werner C, Collins S, Devos F, Le Maillot C (2017b) Hurricane Ingrid and Tropical Storm Hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J Hydrol 551:704–714Google Scholar
  28. Kovacs S, Reinhardt E, Werner C, Kim ST, Devos F, Le Maillot C (2018) Seasonal trends in calcite-raft precipitation from cenotes Rainbow, Feno and Monkey Dust, Quintana Roo, Mexico: implications for paleoenvironmental studies. Palaeogeogr Palaeoclimatol Palaeoecol 497:157–167Google Scholar
  29. Leyden B, Brenner M, Dahlin B (1998) Cultural and climatic history of Coba, a Lowland Maya City in Quintana Roo, Mexico. Quat Res 49:111–122Google Scholar
  30. McNeill-Jewer CA, Reinhardt EG, Collins S, Kovacs S, Chan WM, Devos F, LeMaillot C (2019) The effect of seasonal rainfall on nutrient input and biological productivity in the Yax Chen cave system (Ox Bel Ha), Mexico, and implications for µXRF core studies of paleohydrology. Palaeogeogr Palaeoclimatol Palaeoecol 534:109289Google Scholar
  31. Medina-Elizalde M, Burns S, Lea D, Asmerom Y, von Gunten L, Polyak V, Vuille M, Karmalkar A (2010) High resolution stalagmite climate record from the Yucatan Peninsula spanning the Maya terminal classic period. Earth Planet Sci Lett 298:255–262Google Scholar
  32. Metcalfe S, Barron J, Davies S (2015) The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat Sci Rev 120:1–27Google Scholar
  33. Moseley GE, Richards DA, Smart PL, Standish CD, Hoffmann DL, ten Vinn O (2015) Early–middle Holocene relative sea-level oscillation events recorded in a submerged speleothem from the Yucatán Peninsula, Mexico. Holocene 25:1–11Google Scholar
  34. Negreros-Castillo P, Snook L, Mize C (2003) Regenerating mahogany (Sweietenia macrophyllia) from seed in Quintana Roo, Mexico: the effects of sowing method and clearing treatment. For Ecol Manag 183:351–362Google Scholar
  35. Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401:775Google Scholar
  36. Null KA, Knee KL, Crook ED, de Sieyes NR, Rebolledo-Vieyra M, Hernández-Terrones L, Paytan A (2014) Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont Shelf Res 77:38–50Google Scholar
  37. Parra SM, Valle-Levinson A, Marino-Tapia I, Enriquez C (2015) Salt intrusion at a submarine spring in a fringing reef lagoon. J Geophys Res C Oceans 120:2736–2750Google Scholar
  38. Pérez L, Bugja R, Massaferro J, Steeb P, van Geldern R, Frenzel P, Brenner M, Scharf B, Schwalb A (2010) Post-Columbian environmental history of Lago Petén Itzá, Guatemala. Revista Mexicana de Ciencias Geológicas 27:490–507Google Scholar
  39. Perry E, Velazquez-Oliman G, Socki RA (2003) Hydrogeology of the Yucatán Peninsula. In: Gomez-Pompa A, Allen MF, Fedick SL, Jimenez-Osornio JJ (eds) The lowland Maya: three millennia at the human–wildland interface. Haworth, Binghamton, pp 115–138Google Scholar
  40. Perry E, Paytan A, Pedersen B, Velazquez-Oliman G (2009) Groundwater geochemistry of the Yucatan Peninsula, Mexico; constraints on stratigraphy and hydrogeology. J Hydrol 367:27–40Google Scholar
  41. Regalado IS, García SL, Alvarado LP, Caballero M, Vázquez AL (2018) Ecological drivers of testate amoeba diversity in tropical water bodies of central Mexico. J Limnol 77:385–399Google Scholar
  42. Reimer PJ, Bard MGL, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Edwards RL, Freidrich M, Groots PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Nui M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon 55:1887–1896Google Scholar
  43. Rosenmeier MF, Brenner M, Hodell DA, Martin JB, Curtis JH, Binford MW (2016) A model of the 4000-year paleohydrology (δ18O) record from Lake Salpetén, Guatemala. Glob Planet Change 138:43–55Google Scholar
  44. Smart PL, Beddows PA, Doerr S, Smith SL, Whitaker FF (2006) Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. Geol Soc Am Spec Pap 404:105–128Google Scholar
  45. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53Google Scholar
  46. Steinke TD, Holland AJ, Singh Y (1993) Leaching losses during decomposition of mangrove leaf litter. S Afr J Bot 59:21–25Google Scholar
  47. Stinnesbeck W, Becker J, Hering F, Frey E, Gonzalez AG, Fohlmeister J et al (2017) The earliest settlers of Mesoamerica date back to the late Pleistocene. PLoS ONE 12(8):e0183345Google Scholar
  48. Talley L, Pickard G, Emery W, Swift J (2011) Gravity waves, tides, and coastal oceonography. Descriptive physical oceanography: an introduction. Academic Press, Cambridge, pp 223–244Google Scholar
  49. Torrescano N, Islebe G (2006) Tropical forest and mangrove history from southeastern Mexico: A 5000 yr pollen record and implications for sea level rise. Veg Hist Archaeobot 15:191–195.Google Scholar
  50. Torrescano-Valle N, Islebe G (2015) Holocene paleoecology, climate history and human influence in the southwestern Yucatan Peninsula. Rev Palaeobot Palynol 217:1–8Google Scholar
  51. Valle-Levinson A, Marino-Tapia I, Enriquez C, Waterhouse AF (2011) Tidal variability of salinity and velocity fields related to intense point-source submarine groundwater discharges into the coastal ocean. Limnol Oceanogr 56:1213–1224Google Scholar
  52. van Hengstum P, Reinhardt E, Beddows P, Huang R, Gabriel J (2008) Thecamoebians (Testate Amoebae) and foraminifera from three anchialine cenotes in Mexico: low salinity (1.5–4.5 psu) faunal transitions. J Foraminifer Res 38:305–317Google Scholar
  53. van Hengstum P, Reinhardt E, Beddows P, Gabriel J (2010) Linkages between Holocene paleoclimate and paleohydrology preserved in a Yucatan underwater cave. Quat Sci Rev 29:2788–2798Google Scholar
  54. Van Hengstum P, Maale G, Donnelly J, Albury N, Onac B, Sullivan R, Winkler T, Tamalavage A, MacDonald D (2018) Drought in the northern Bahamas from 3300 to 2500 years ago. Quat Sci Rev 186:169–185.Google Scholar
  55. Ward W, Weidi A, Back W (1985) Geology and hydrogeology of the Yucatan and Quaternary geology of Northeastern Yucatan Peninsula. New Orleans Geological Society, New OrleansGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anya Krywy-Janzen
    • 1
    Email author
  • Eduard Reinhardt
    • 1
  • Chelsi McNeill-Jewer
    • 1
  • Aaron Coutino
    • 2
  • Brenda Waltham
    • 3
  • Marek Stastna
    • 2
  • Dominique Rissolo
    • 4
  • Sam Meacham
    • 5
  • Peter van Hengstum
    • 6
  1. 1.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.Department of Civil and Environmental EngineeringCarleton UniversityOttawaCanada
  4. 4.Center of Interdisciplinary Science for Art - Architecture and ArcheologyUniversity of California-San DiegoSan DiegoUSA
  5. 5.CINDAQ - El Centro Investigador del Sistema Acuífero de Quintana Roo, A.C.Puerto AventurasMexico
  6. 6.Department of OceanographyTexas A&M UniversityGalvestonUSA

Personalised recommendations