Advertisement

Journal of Paleolimnology

, Volume 62, Issue 4, pp 359–372 | Cite as

Recent onset of eutrophication in Lake Izabal, the largest water body in Guatemala

  • Jonathan Obrist-FarnerEmail author
  • Mark Brenner
  • Jason H. Curtis
  • William F. Kenney
  • Carlo Salvinelli
Original paper

Abstract

Recent human population growth has contributed to the degradation of environmental resources in Guatemala. Since 1900, the population of the country grew from < 1 to > 17 million inhabitants. The watershed of Lake Izabal, eastern Guatemala, also experienced rapid population growth, and with it, development of intensive agriculture in areas adjacent to the lake. These recent demographic and land-use changes altered anthropogenic nutrient inputs to the water body, through delivery of raw sewage, and agricultural practices that include excessive use of fertilizers. Currently, Lake Izabal is marked by frequent algal blooms and associated fish-kill events. It also hosts a number of invasive, and in some cases, exotic plant and animal species. We used data from a sediment core collected in the western end of the lake to link past anthropogenic activities in the watershed to the deterioration of water quality and shifts in aquatic ecosystem functioning. We measured total organic carbon (TOC), total nitrogen (TN), and δ13C and δ15N of organic matter in a 137Cs- and 14C-dated sediment core from the Polochic Delta in Lake Izabal to infer past limnological changes. The core chronology indicates that 505 cm of sediment accumulated in only the last 370 years (~ 1.4 cm a−1). TOC and TN concentrations increased since about 1950, a time during which the TOC:TN ratio decreased, indicating a relatively greater contribution of phytoplankton to the sediment organic matter. Stratigraphic shifts in δ13C and δ15N indicate recent increasing inputs of raw sewage and fertilizer to the lake during the same time period. Lake Izabal, like many other water bodies in Guatemala, is starting to undergo cultural eutrophication, which probably accounts for the frequent algal blooms, proliferation of invasive species (e.g. Hydrilla verticillata), and decline in fish abundance.

Keywords

Eutrophication Stable isotopes Nutrients Lake Izabal Guatemala 

Notes

Acknowledgements

We thank Oscar Nuñez, Heidy Garcia, Elmer Tun Pana, Noe Hernandez, Marco Tulio Milla, Edgar Arnoldo Caal Coy, and all the people from Defensores de la Naturaleza who provided lake access and helped us collect the sediment core. We also thank Elisandra Hernandez and Benjamin Keenan, who helped in the field. We thank Editor Tom Whitmore, Associate Editor Neal Michelutti, and two anonymous reviewers who provided useful comments that improved the quality of an earlier version of the manuscript. JOF acknowledges support from Missouri University of Science and Technology.

References

  1. AMSA (Autoridad para el Manejo Sustentable del Lago de Amatitlán) (2015) Calidad del agua de la cuenca y Lago de Amatitlán, Guatemala: Division de Control, Calidad Ambiental y ManejoGoogle Scholar
  2. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. CATENA 5:1–8CrossRefGoogle Scholar
  3. Arnold TE, Kenney WF, Curtis JH, Bianchi TS, Brenner M (2018) Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake. PLoS ONE 13:e0191073Google Scholar
  4. Authemayou C, Brocard G, Teyssier C, Simon-Labric T, Guttiérrez A, Chiquín EN, Morán S (2011) The Caribbean–North America–Cocos Triple Junction and the dynamics of the Polochic–Motagua fault systems: pull-up and zipper models. Tectonics 30:TC3010CrossRefGoogle Scholar
  5. Bartole R, Lodolo E, Obrist-Farner J, Morelli D (2019) Sedimentary architecture, structural setting, and Late Cenozoic depocentre migration of an asymmetric transtensional basin: Lake Izabal, eastern Guatemala. Tectonophysics 750:419–433CrossRefGoogle Scholar
  6. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474Google Scholar
  7. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221Google Scholar
  8. Brinson MM (1973) The organic matter budget and energy flow of a tropical lowland aquatic ecosystem. Ph.D., University of Florida, GainesvilleGoogle Scholar
  9. Brinson MM, Nordlie FG (1975) II. Lakes. 8. Central and South America: Lake Izabal, Guatemala. Verh Int Ver Limnol 19:1468–1479Google Scholar
  10. Burkart B (1978) Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geology 6:328–332CrossRefGoogle Scholar
  11. Dix A, Maldonado M, Dix M, de Bocaletti O, Giron R, De la Roca I, Bailey AC, Herrera K, Perez JF, Pierola K, River G (1999) El impacto de la cuenca del Rio Polochic sobre la integridad biologica del Lago de Izabal. Universidad del Valle, Proyecto No. 4Google Scholar
  12. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Hoboken, pp 283–333CrossRefGoogle Scholar
  13. Fisher MM, Brenner M, Reddy KR (1992) A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J Paleolimnol 7:157–161CrossRefGoogle Scholar
  14. Guilderson TP, Reimer PJ, Brown TA (2005) The boon and bane of radiocarbon dating. Science 307:362CrossRefGoogle Scholar
  15. Guzmán-Speziale M, Meneses-Rocha JJ (2000) The North America–Caribbean plate boundary west of the Motagua–Polochic fault system: a fault jog in Southeastern Mexico. J S Am Earth Sci 13:459–468CrossRefGoogle Scholar
  16. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102CrossRefGoogle Scholar
  17. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214CrossRefGoogle Scholar
  18. Hollander DJ, McKenzie JA (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932CrossRefGoogle Scholar
  19. Hollander DJ, McKenzie JA, Haven HL (1992) A 200 year sedimentary record of progressive eutrophication in lake Greifen (Switzerland): implications for the origin of organic-carbon-rich sediments. Geology 20:825–828CrossRefGoogle Scholar
  20. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Hoboken, pp 375–449CrossRefGoogle Scholar
  21. Lodolo E, Menichetti M, Guzmán-Speziale M, Giunta G, Zanolla C (2009) Deep structural setting of the North American–Caribbean plate boundary in eastern Guatemala. Geofis Int 48:263–277Google Scholar
  22. Machorro Sagastume RA (1996) Water quality at Lago de Izabal, Guatemala: geochemical characterization and assessment of trophic status. Ph.D., University of Texas, El PasoGoogle Scholar
  23. Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588CrossRefGoogle Scholar
  24. McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 99–118Google Scholar
  25. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) tracking environmental change using lake sediments: physical and geochemical methods. Springer, Dordrecht, pp 239–269Google Scholar
  26. Monterroso I, Binimelis R, Rodriguez-Labajos B (2011) New methods for the analysis of invasion processes: multi-criteria evaluation of the invasion of Hydrilla verticillata in Guatemala. J Environ Manag 92:494–507CrossRefGoogle Scholar
  27. Morrissey CA, Boldt A, Mapstone A, Newton J, Ormerod SJ (2013) Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia 700:231–244CrossRefGoogle Scholar
  28. Muehlberger WR, Ritchie AW (1975) Caribbean–Americas plate boundary in Guatemala and southern Mexico as seen on Skylab IV orbital photography. Geology 3:232–235CrossRefGoogle Scholar
  29. Müller B, Bryant LD, Matzinger A, Wüest A (2012) Hypolimnetic oxygen depletion in eutrophic lakes. Environ Sci Technol 46:9964–9971Google Scholar
  30. Munsell Color Chart (2010) Munsell soil color charts: with genuine Munsell color chips. Grand Rapids, MIGoogle Scholar
  31. Oliva B, Perez JF, Herrera K, Echeverria S, Machado JP, Azevedo Silva C (2008) Trophic state of Lake Peten Itza, Guatemala. In: XIII world water congress proceedings, Montpellier, FranceGoogle Scholar
  32. Pérez L, Bugja R, Lorenschat L, Brenner M, Curtis J, Hoelzmann P, Islebe G, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661:407–433CrossRefGoogle Scholar
  33. Perez S, Oliva B, Herrera K, Echeverria S (2003) Contaminación fisicoquímica y bacteriológica del Río Dulce y Lago de Izabal. USAC, GuatemalaGoogle Scholar
  34. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  35. Pindell J, Kennan L, Maresch WV, Stanek K-P, Draper G, Higgs R (2005) Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonic controls on basin development in proto-Caribbean margins. In: Lallemant HGA, Sisson VB (eds) Caribbean–South American plate interactions, Venezuela. Geological Society of America Special Paper, vol 394, pp 7–52Google Scholar
  36. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  37. Rejmánková E, Komárek J, Dix M, Komárková J, Girón N (2011) Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica 41:296–302CrossRefGoogle Scholar
  38. Roberts RJ, Iving EM (1957) Mineral deposits of Central America: geological survey bulletin 1034. US Government Printing Office, Washington, DCGoogle Scholar
  39. Rosenmeier MF, Brenner M, Kenney WF, Whitmore TJ, Taylor CM (2004) Recent eutrophication in the Southern Basin of Lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiologia 511(1):161–172CrossRefGoogle Scholar
  40. Savage C (2005) Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio 34:145–150CrossRefGoogle Scholar
  41. Savage C, Leavitt PR, Elmgren R (2004) Distribution and retention of effluent nitrogen in surface sediments of a coastal bay. Limnol Oceanogr 49:1503–1511CrossRefGoogle Scholar
  42. Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol Oceanogr 36:961–975CrossRefGoogle Scholar
  43. Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929CrossRefGoogle Scholar
  44. Schelske CL, Peplow A, Brenner M, Spencer CN (1994) Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10(2):115–128CrossRefGoogle Scholar
  45. Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136CrossRefGoogle Scholar
  46. Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci World J 1:427–442CrossRefGoogle Scholar
  47. Torres IC, Inglett PW, Brenner M, Kenney WF, Ramesh Reddy K (2012) Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J Paleolimnol 47:693–706Google Scholar
  48. Turner RE, Rabalais NN (1994) Coastal eutrophication near the Mississippi river delta. Nature 368:619CrossRefGoogle Scholar
  49. United States Environmental Protection Agency (EPA) (2012) Ecoregion nutrient criteria documents for rivers and streams. https://www.epa.gov/nutrient-policy-data/ecoregional-criteria-documents. Accessed 15 July 2019
  50. van Wouw K, Minnaar A (2013) Canadian national instrument 43-101 technical report: preliminary economic assessment, Torlon Hill Project, Guatemala. Prepared for Firestone Ventures Inc., EdmontonGoogle Scholar
  51. Velez MI, Curtis JH, Brenner M, Escobar J, Leyden BW, Popenoe de Hatch M (2011) Environmental and cultural changes in highland Guatemala inferred from Lake Amatitlán sediments. Geoarchaeology 26:346–364CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Geosciences and Geological and Petroleum Engineering DepartmentMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  3. 3.Land Use and Environmental Change InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Civil, Environmental, and Architectural Engineering DepartmentUniversity of Colorado BoulderBoulderUSA

Personalised recommendations