Historical eruptions of Lautaro Volcano and their impacts on lacustrine ecosystems in southern Argentina

  • Christoph MayrEmail author
  • Rebecca E. Smith
  • M. Luján García
  • Julieta Massaferro
  • Andreas Lücke
  • Nathalie Dubois
  • Nora I. Maidana
  • Wolfgang J.-H. Meier
  • Holger Wissel
  • Bernd Zolitschka
Original paper


Lacustrine sediment sequences were obtained from Lagunas Verde and Gemelas Este, two small lakes located east of the southern Patagonian Ice Field and close to the village of El Chaltén, in Argentinian Patagonia. Four tephra layers were identified in each of the short sediment sequences and characterised using individual glass-shard tephra chemistry to determine provenance. Bulk sediment geochemistry and diatom assemblages were analysed to understand the impact of the tephra deposits on the lake ecosystems. Age-depth models for the cores were established by 137Cs and 210Pb dating. Tephra deposits in Laguna Gemelas Este were dated to AD 1986–1998, 1943–1968, 1927–1955, and 1849–1892, and the tephra deposits in Laguna Verde were dated to AD 1940–1970, 1888–1934, 1871–1920, and 1536–1669, the latter interval determined by extrapolation. All tephras had similar geochemical composition and originated from volcanoes in the northern Austral Volcanic Zone. Tephra units were attributed to known historical eruptions and all but one, most likely, were from Lautaro Volcano (49°01′S; 73°33′W). The age of the youngest tephra (AD 1986–1998) from Laguna Gemelas Este points to Viedma Volcano (49°22′S; 73°19′W) as a possible source. Volcanic eruptions had a larger impact on Laguna Verde than on Laguna Gemelas Este, as expressed by changes in δ15N values and diatom communities during tephra deposition. These shifts are explained by perturbations of the nitrogen cycle in the lake, associated with shifts in lacustrine primary production. Primary producers may have been affected by increased water turbidity caused by the ash fall, and consequently, used less nitrogen. Diatom assemblages in Laguna Verde showed marked reductions in numbers of planktonic/tychoplanktonic taxa, in favour of epiphytic/benthic diatom taxa, when tephra was deposited. This contrasts with Laguna Gemelas Este, in which epiphytic/benthic diatom species were generally more abundant and decreases in abundances of planktonic/tychoplanktonic taxa were not as strongly linked to tephra layers as in Laguna Verde. At Laguna Gemelas Este, flatter relief, greater fetch and/or drier climate may have contributed to generally less ecosystem variability, resulting in seemingly less environmental response to volcanic eruptions than in Laguna Verde.


Patagonia Northern Austral Volcanic Zone 210Pb dating Diatoms Geochemistry Stable isotopes Tephra 



CM and JM acknowledge funding by BMBF (01DN16025) and cooperative project BMBF/MINCYT (AL15/03). RES was funded by NERC as part of the Environmental Research Doctoral Training Partnership at the University of Oxford (Grant: NE/L002621/1). We are indebted to Ana Srur for help in the field and Sabine Stahl for assistance with XRF scanning. We thank the Los Glaciares National Park for support and permission for sampling. The provision of local meteorological data by the Argentinian Undersecretary of Water Resources of the Nation, Federico Reese, and Valeria Luvisoti, is gratefully acknowledged. We are grateful to Sebastien Bertrand and an anonymous reviewer, and to the editors, in particular Mark Brenner, for comments and suggestions on earlier versions of the manuscript.


  1. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol I. Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203Google Scholar
  2. Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. Holocene 10:303–310CrossRefGoogle Scholar
  3. Bates CD, Coxon P, Gibbard PL (1978) A new method for the preparation of clay-rich sediment samples for palynological investigation. New Phytol 81:459–463CrossRefGoogle Scholar
  4. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, New York, pp 527–570Google Scholar
  5. Burmeister CV (1891) Breves datos sobre una excursión a Patagonia. Rev Museo de la Plata 2:381–394Google Scholar
  6. Contreras S, Werne JP, Araneda A, Urrutia R, Conejero CA (2018) Organic matter geochemical signatures (TOC, TN, C/N ratio, δδ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes. Sci Total Environ 630:878–888CrossRefGoogle Scholar
  7. Cruces F, Urrutia R, Parra O, Araneda A, Treutler H, Bertrand S, Fagel N, Torres L, Barra R, Chirinos L (2006) Changes in diatom assemblages in an Andean lake in response to a recent volcanic event. Arch Hydrobiol 165:23–35CrossRefGoogle Scholar
  8. Del Carlo P, Di Roberto A, D’Orazio M, Petrelli M, Angioletti A, Zanchetta G, Maggi V, Daga R, Nazzari M, Rocchi S (2018) Late Glacial-Holocene tephra from southern Patagonia and Tierra del Fuego (Argentina, Chile): a complete textural and geochemical fingerprinting for distal correlations in the Southern Hemisphere. Quat Sci Rev 195:153–170CrossRefGoogle Scholar
  9. Egan J, Allot THE, Blackford JJ (2018) Diatom-inferred aquatic impacts of the mid-Holocene eruption of Mount Mazama, Oregon, USA. Quat Res. Google Scholar
  10. Fan J, Xiao J, Wen R, Zhang S, Wang X, Cui L, Yamagata H (2017) Carbon and nitrogen signatures of sedimentary organic matter from Dali Lake in Inner Mongolia: implications for Holocene hydrological and ecological variations in the East Asian summer monsoon margin. Quat Int 452:65–78CrossRefGoogle Scholar
  11. Fernández M, Björck S, Wohlfarth B, Maidana NI, Unkel I, Van der Putten N (2013) Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South Amerika, in response to shifts in the southwesterly wind belt during last deglaciation. J Paleolimnol 50:433–446CrossRefGoogle Scholar
  12. Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C, Ohlendorf C, Paez MM, Quintana FA, Schäbitz F, Zolitschka B (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 281:363–375CrossRefGoogle Scholar
  13. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 283–333CrossRefGoogle Scholar
  14. Fontjin K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84CrossRefGoogle Scholar
  15. Fontijn K, Rawson H, van Daele M, Moernaut J, Abarzúa AM, Heirman K, Bertrand S, Pyle DM, Mather TA, de Batist M, Naranjo J-A, Moreno H (2016) Synchronisation of sedimentary records using tephra: a postglacial tephrochronological model for the Chilean Lake District. Quat Sci Rev 137:234–254CrossRefGoogle Scholar
  16. Frenguelli J (1923) Contribuciones para la sinopsis de las diatomeas argentinas. I Diatomeas del Río Primero en la ciudad de Córdoba. Bol Acad Nac Cienc Cordoba 27:13–119Google Scholar
  17. Frenguelli J (1942) Xvii Contribución al conocimiento de las diatomeas argentinas. Diatomeas del Neuquén (Patagonia). Rev Museo Plata (n.s.) Bot 5(20):73–219Google Scholar
  18. Froggatt PC, Gosson GJ (1982) Techniques for the preparation of tephra samples for mineral and chemical analysis and radiometric dating. Department of Geology, Victoria University of Wellington, vol 23, pp 1–2Google Scholar
  19. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  20. Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Climate 26:215–230CrossRefGoogle Scholar
  21. Giles MP, Michelutti N, Grooms C, Smaol JP (2018) Long-term limnological changes in the Ecuadorian páramo: comparing the ecological responses to climate warming of shallow waterbodies versus deep lakes. Freshw Biol 63:1316–1325CrossRefGoogle Scholar
  22. Global Volcanism Program (2013) In: Venzke E (ed) Volcanoes of the world, v. 4.7.4. Smithsonian Institution. Downloaded 29 Oct 2018.
  23. Haberzettl T, Anselmetti FS, Bowen SW, Fey M, Mayr C, Zolitschka B, Ariztegui D, Mauz B, Ohlendorf C, Kastner S, Lücke A, Schäbitz F, Wille M (2009) Late Pleistocene dust deposition in the Patagonian steppe—extending and refining the paleoenvironmental and tephrochronological record from Laguna Potrok Aike back to 55 ka. Quat Sci Rev 28:2927–2939CrossRefGoogle Scholar
  24. Hahn A, Kliem P, Oehlerich M, Ohlendorf C, Zolitschka B, the PASADO Science Team (2014) Elemental composition of the Laguna Potrok Aike sediment sequence reveals paleoclimatic changes over the past 51 ka in southern Patagonia, Argentina. J Paleolimnol 52:349–366CrossRefGoogle Scholar
  25. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 15:850–853CrossRefGoogle Scholar
  26. Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856CrossRefGoogle Scholar
  27. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, De Bruin D, Canil D, Cornell D, De Hoog CJ, Dalpé C, Danyushevshy L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008. CrossRefGoogle Scholar
  28. Kastner S, Enters D, Ohlendorf C, Haberzettl T, Kuhn G, Lücke A, Mayr C, Reyss J-L, Wastegård S, Zolitschka B (2010) Reconstructing 2000 years of hydrological variation derived from laminated proglacial sediments of Lago del Desierto at the eastern margin of the Southern Patagonian Ice Field, Argentina. Global Planet Change 72:201–214CrossRefGoogle Scholar
  29. Kilian R (1990) The Australandean Volcanic Zone (South Patagonia). In: Symposium international “Géodynamique andine”: Résumés des communication, Grenoble, France. Orstom, Paris, pp 301–304Google Scholar
  30. Kilian R, Hohner M, Biester H, Wallrabe-Adams HJ, Stern CR (2003) Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53–55 S). Rev Geol Chile 30:23–37CrossRefGoogle Scholar
  31. Lliboutry L (1998) Glaciers of the Wet Andes. In: Williams J, Ferringo R (eds) Glaciers of South America. US Geological Survey Professional Paper 1386-I, pp 148–206Google Scholar
  32. Lotter AE, Birks HJB, Zolitschka B (1995) Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. J Paleolimnol 14:23–47CrossRefGoogle Scholar
  33. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153CrossRefGoogle Scholar
  34. Madsen A (1952) Patagonia vieja. Ciordia y Rodríguez, Buenos AiresGoogle Scholar
  35. Markgraf V, Bradbury JP, Schwalb A, Burns SJ, Stern C, Ariztegui D, Anselmetti FS, Stine S, Maidana N (2003) Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13:597–607CrossRefGoogle Scholar
  36. Martinic M (1988) Actividad volcánica histórica en la region de Magallanes. Rev Geol Chile 15:181–186Google Scholar
  37. Martinic M (2008) Registro historico de antecedentes volcánicos y sísmicos en la Patagonia Austral y la Tierra del Fuego. Magallania 36:5–18Google Scholar
  38. Martinic M (2016) La erupción del volcán de los gigantes (Lautaro) en 1883. Algunas Consideraciones. Magallania 44:65–68CrossRefGoogle Scholar
  39. Masiokas M, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268CrossRefGoogle Scholar
  40. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102CrossRefGoogle Scholar
  41. Meier WJ-H, Grießinger J, Hochreuther P, Braun MH (2018) An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front Earth Sci. Google Scholar
  42. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7:13603. CrossRefGoogle Scholar
  43. Metzeltin D, Lange-Bertalot H (1998) Tropical diatoms of South America I. About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconogr Diatomol 5:1–695Google Scholar
  44. Metzeltin D, Lange-Bertalot H (2007) Tropical diatoms of South America II. Special remarks on biogeographic disjunction. Iconogr Diatomol 18:1–877Google Scholar
  45. Metzeltin D, Lange-Bertalot H, García-Rodríguez F (2005) Diatoms of Uruguay. Compared with other taxa from South America and elsewhere. Iconogr Diatomol 15:1–736Google Scholar
  46. Meyers P, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  47. Motoki A, Orihashi Y, Naranjo J, Hirata D, Skvarca P, Anma R (2006) Geologic reconnaissance of Lautaro Volcano, Chilean Patagonia. Rev Geol Chile 33:177–187CrossRefGoogle Scholar
  48. Munsell Color (2000) Munsell soil color charts. Munsell Color, Grand RapidsGoogle Scholar
  49. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42 30′–45 S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31:224–240Google Scholar
  50. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res: atmos 87:1231–1238CrossRefGoogle Scholar
  51. Ohlendorf C, Gebhardt C, Hahn A, Kliem P, Zolitschka B, the PASADO science team (2011) The PASADO core processing strategy—a proposed new protocol for sediment core treatment in multidisciplinary lake drilling projects. Sediment Geol 239:104–115CrossRefGoogle Scholar
  52. Recasens C, Ariztegui D, Maidana NI, Zolitschka B, The PASADO, Team Science (2015) Diatoms as indicators of hydrological and climatic changes in Laguna Potrok Aike (Patagonia) since the Late Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 417:309–319CrossRefGoogle Scholar
  53. Ribeiro Guevara S, Arribére M (2002) 137Cs dating of lake cores form the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. J Radioanal Nucl Chem 252:37–45CrossRefGoogle Scholar
  54. Rodriguez DR (2009) Allá lejos El Chaltén. Honorable Cámara de Diputados de la Provincia de Santa Cruz, Rio GallegosGoogle Scholar
  55. Rumrich U, Lange-Bertalot H, Rumrich M (2000) Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego. Iconogr Diatomol 9:1–649Google Scholar
  56. Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200CrossRefGoogle Scholar
  57. Self AE, Klimaschewski A, Solovieva N, Jones VJ, Andrén E, Andreev AA, Hammarlund D, Brooks SJ (2015) The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka. Glob Planet Change 134:67–81CrossRefGoogle Scholar
  58. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world. Smithsonian Institution, BerkeleyGoogle Scholar
  59. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:1–51CrossRefGoogle Scholar
  60. Stern C (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454CrossRefGoogle Scholar
  61. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281CrossRefGoogle Scholar
  62. Telford RJ, Barker P, Metcalfe S, Newton A (2004) Lacustrine responses to tephra deposition: examples from Mexico. Quat Sci Rev 23:2337–2353CrossRefGoogle Scholar
  63. Urrutia R, Araneda A, Cruces F, Torres L, Chirinos L, Treutler HC, Fagel N, Bertrand S, Alvial I, Barra R, Chapron E (2007) Changes in diatom, pollen, and chironomid assemblages in response to a recent volcanic event in Lake Galletue (Chilean Andes). Limnologica 37:49–62CrossRefGoogle Scholar
  64. Villegas DC, Pereyra FX, Viaggio M, Ferrer JA (2009) Occurencia de materiales piroclásticos en suelos de tres sectores del oeste de Santa Cruz. Rev Assoc Geol Argent 64:303–311Google Scholar
  65. Waser NAD, Harrison PJ, Nielsen B, Calvert SE, Turpin DH (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol Oceanogr 43:215–224CrossRefGoogle Scholar
  66. Wastegård S, Veres D, Kliem P, Hahn A, Ohlendorf C, Zolitschka B, The PASADO, Team Science (2013) Towards a late Quaternary tephrochronological framework for the southernmost part of South America – the Laguna Potrok Aike tephra record. Quat Sci Rev 71:81–90CrossRefGoogle Scholar
  67. Weller DJ, Miranda CG, Moreno PI, Villa-Martínez R, Stern CR (2015) Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile. Bull Volcanol 77:1–24CrossRefGoogle Scholar
  68. Weller DJ, de Porras ME, Maldonado A (2017) Holocene tephrochronology of the lower Río Cisnes valley, southern Chile. Andean Geol 44:229–248CrossRefGoogle Scholar
  69. Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Christoph Mayr
    • 1
    • 2
    Email author
  • Rebecca E. Smith
    • 3
  • M. Luján García
    • 4
  • Julieta Massaferro
    • 5
  • Andreas Lücke
    • 6
  • Nathalie Dubois
    • 7
  • Nora I. Maidana
    • 4
  • Wolfgang J.-H. Meier
    • 1
  • Holger Wissel
    • 6
  • Bernd Zolitschka
    • 8
  1. 1.Institut für GeographieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department für Geo- and Umweltwissenschaften and GeoBio-CenterLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Research Laboratory for Archaeology and the History of ArtUniversity of OxfordOxfordUK
  4. 4.Laboratorio de Diatomeas Continentales, UBA, DBBECONICET-UBA, IBBEABuenos AiresArgentina
  5. 5.CONICET, CENAC/APNBarilocheArgentina
  6. 6.Institut für Bio- und Geowissenschaften, IBG-3: AgrosphäreForschungszentrum Jülich GmbHJülichGermany
  7. 7.Department of Surface Waters - Research and ManagementEAWAGDübendorfSwitzerland
  8. 8.Institut für Geographie, GEOPOLARUniversität BremenBremenGermany

Personalised recommendations