Journal of Paleolimnology

, Volume 61, Issue 2, pp 165–183 | Cite as

Eutrophication histories of three contrasting lakes in a naturally nutrient-rich boreal watercourse

  • Mira TammelinEmail author
  • Tommi Kauppila
  • Juha Miettinen
  • Sami Jokinen
Original paper


The Iisalmi Route watercourse in central-eastern Finland contains a number of highly eutrophic lakes. Despite substantial impacts from anthropogenic activity, the region appears to be naturally eutrophic because of its geological setting. A passive continental ice sheet deposited fine-grained basal till that contributes to the naturally eutrophic status of the lakes. Detailed paleolimnological studies in the Iisalmi Route are few. Therefore, we studied the eutrophication histories of three contrasting Iisalmi Route lakes: (1) small headwater Lake Saarisjärvi, (2) larger, but very shallow headwater Lake Näläntöjärvi, and (3) large central basin, Lake Porovesi. We compared the suitability of three diatom-total phosphorus transfer functions for application to fossil samples. A local transfer function, specifically targeted to the Iisalmi Route, was the most suitable for the headwater lakes. In contrast, two regional transfer functions, which have larger geographical coverage, performed equally well for the large central basin. All three lakes proved to have been naturally eutrophic for thousands of years. Highest natural variability occurred in the longest core, from shallow headwater Lake Näläntöjärvi. This variability reflects the dynamic development of the basin and its catchment after deglaciation. Diatom assemblage changes in cores from Lakes Saarisjärvi and Porovesi suggest cultural eutrophication, most likely after the region was colonized in the sixteenth century, followed by salinization in more recent times. Our study deepens understanding of naturally eutrophic boreal lakes that are located on fine-grained tills and their sensitivity to natural and anthropogenic forcing. Our results also highlight the importance of selecting appropriate transfer functions and realistic restoration targets when dealing with naturally eutrophic lakes.


Naturally eutrophic Diatoms Transfer function Phosphorus Iisalmi Route Fine-grained till 



This study was funded by the Finnish Cultural Foundation, the Geological Survey of Finland, and the Nutrient Load to Inland Waters (FOKUS II) project. We thank Mari Räty and Perttu Virkajärvi from the Natural Resources Institute Finland, and the FOKUS II project steering group for helpful collaboration. We also thank Alpo Eronen for sediment sampling, Kari Tiitta for preparing the diatom slides and measuring the magnetic susceptibility of the cores, and Saija Saarni for valuable feedback. Furthermore, we thank Jeffery Stone and an anonymous reviewer for their detailed suggestions that helped improve the manuscript, as well as the Editor-in-Chief Mark Brenner.

Supplementary material

10933_2018_51_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211Google Scholar
  2. Alhonen P (1983) Aspects of the developmental history and paleolimnology of lakes in Finland. Hydrobiologia 103:1–4CrossRefGoogle Scholar
  3. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202CrossRefGoogle Scholar
  4. Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2011) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol 45:405–414CrossRefGoogle Scholar
  5. Battarbee RW, Anderson NJ, Bennion H, Simpson GL (2012) Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshw Biol 57:2091–2106CrossRefGoogle Scholar
  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  7. Bennion H, Battarbee R (2007) The European Union water framework directive: opportunities for palaeolimnology. J Paleolimnol 38:285–295CrossRefGoogle Scholar
  8. Bennion H, Battarbee RW, Sayer CD, Simpson GL, Anderson TA (2011) Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J Paleolimnol 45:533–544CrossRefGoogle Scholar
  9. Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40:582–588CrossRefGoogle Scholar
  10. Bradshaw EG, Nielsen AB, Anderson NJ (2006) Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Reg Environ Change 6:17–24CrossRefGoogle Scholar
  11. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  12. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  13. Ekström SM, Kritzberg ES, Kleja DB, Larsson N, Nilsson PA, Graneli W, Bergkvist B (2011) Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water. Environ Sci Technol 45:4733–4739CrossRefGoogle Scholar
  14. Engström DR, Fritz SC, Almendiger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166CrossRefGoogle Scholar
  15. Eskelinen A, Hyvönen A, Hendriksson N, Kaipainen T, Mursu J (2017) Peltosalmi-Ohenmäki pohjavesialueen geologinen rakenneselvitys ja pohjaveden virtausmalli. Geological Survey of Finland, Kuopio (in Finnish) Google Scholar
  16. Finnish Environment Institute (2014) Corine land cover 2012. VALUE—Valuma-alueen rajaustyökalu KM10. Inspire ID: 1002025. Accessed 3 Mar 2017
  17. Finnish Environment Institute (2016) Pintavesien tilan tietojärjestelmä, vedenlaatu PIVET. Ympäristötiedon hallintajärjestelmä Hertta. Accessed 21 Dec 2016
  18. Finnish Environment Institute (2018) Watershed simulation and forecasting system (WSFS-VEMALA). Version V.5B. Accessed 10 Apr 2018
  19. Geological Survey of Finland (1993) Superficial deposits of Finland 1:1 000 000. Hakku Service for Finnish spatial data, documents, and metadata. Version 1.0. Accessed 16 July 2014
  20. Geological Survey of Finland (2014) Peat resource accounting. Turvevarojen tilinpito web service. Version 1.0. Accessed 12 July 2018
  21. Geological Survey of Finland (2016) Bedrock of Finland 1:200 000. Hakku Service for Finnish spatial data, documents, and metadata. Version 2.1. Resource identifier: 1000161. Accessed 10 Apr 2018
  22. Gottschalk S (2011) EU reference conditions in Swedish lakes identified with diatoms as palaeoindicators—a review. Boreal Environ Res 16:473–494Google Scholar
  23. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  24. Grönlund T (1988) Järvialtaan kehitys ja piilevästratigrafia. In: Kukkonen E, Sahala L (eds) Iisalmen kartta-alueen maaperä. Geological survey of Finland, Espoo, Suomen geologinen kartta 1:100 000, Maaperäkarttojen selitykset, lehti 3341, pp 26–28 (Quaternary deposits in the Iisalmi map-sheet area, in Finnish) Google Scholar
  25. Guiry MT, Guiry GM (2018) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Accessed on April 10, 2018
  26. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  27. Heikkilä M, Seppä H (2003) A 11,000 yr palaeotemperature reconstruction from the northern boreal zone in Finland. Quat Sci Rev 22:541–554CrossRefGoogle Scholar
  28. Heikkilä M, Edwards TWD, Seppä H, Sonninen E (2010) Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology. Quat Sci Rev 29:2146–2160CrossRefGoogle Scholar
  29. Hill MO, Gauch HG Jr. (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  30. Jenny J-P, Francus P, Normandeau A, Lapointe F, Perga M-E, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biol 22:1481–1489CrossRefGoogle Scholar
  31. Juggins S (2007) C2 version 1.5 user guide, Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon TyneGoogle Scholar
  32. Juggins S (2017) rioja: analysis of quaternary science data. R package version 0.9-15.1. Accessed 25 Apr 2018
  33. Juggins S, Anderson NJ, Ramstack Hobbs JM, Heathcote AJ (2013) Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. J Paleolimnol 49:373–390CrossRefGoogle Scholar
  34. Kansanen PH, Jaakkola T, Kulmala S, Suutarinen R (1991) Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia 222:121–140CrossRefGoogle Scholar
  35. Kauppila T, Moisio T, Salonen V-P (2002) A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. J Paleolimnol 27:261–273CrossRefGoogle Scholar
  36. Kauppila T, Kanninen A, Viitasalo M, Räsänen J, Meissner K, Mattila J (2012) Comparing long term sediment records to current biological quality element data—implications for bioassessment and management of a Eutrophic lake. Limnologica 42:19–30CrossRefGoogle Scholar
  37. Kaushal SS, Likens GE, Pace ML, Utz RM, Haq S, Gorman J, Grese M (2018) Freshwater salinization syndrome on a continental scale. Proc Natl Acad Sci USA 155:E574–E583. CrossRefGoogle Scholar
  38. Korhonen J (2006) Long-term changes in lake ice cover in Finland. Hydrol Res 37:347–363CrossRefGoogle Scholar
  39. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2. Gustav Fischer, JenaGoogle Scholar
  40. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2, Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2. Gustav Fischer, JenaGoogle Scholar
  41. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2. Gustav Fischer, JenaGoogle Scholar
  42. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4, Achnanthaceae, Kritishe Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, vol 2. Gustav Fischer, JenaGoogle Scholar
  43. Kukkonen E (1988) Yleistä. In: Kukkonen E, Sahala L (eds) Iisalmen kartta-alueen maaperä. Geological Survey of Finland, Espoo, Suomen geologinen kartta 1:100 000, Maaperäkarttojen selitykset, lehti 3341, p 21 (Quaternary deposits in the Iisalmi map-sheet area, in Finnish)Google Scholar
  44. Linderholm HW, Nicolle M, Francus P, Gajewski K, Helama S, Korhola A, Solomina O, Yu Z, Zhang P, D’Andrea WJ, Debret M, Divine DV, Gunnarson BE, Loader NJ, Massei N, Seftigen K, Thomas EK, Werner J, Andersson S, Berntsson A, Luoto TP, Nevalainen L, Saarni S, Väliranta M (2018) Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Clim Past 14:473–514CrossRefGoogle Scholar
  45. Livingstone DA (1955) A lightweight piston sampler for lake deposits. Ecology 36:137–139CrossRefGoogle Scholar
  46. Miettinen JO (2003) A diatom-total phosphorus transfer function for freshwater lakes in southeastern Finland, including cross-validation with independent test lakes. Boreal Environ Res 8:215–228Google Scholar
  47. Miettinen JO, Kukkonen M, Simola H (2005) Hindcasting baseline values for water colour and total phosphorus concentration in lakes using sedimentary diatoms—implications for lake typology in Finland. Boreal Environ Res 10:31–43Google Scholar
  48. Miller GH, Brigham-Grette J, Alley RB, Anderson L, Bauch HA, Douglas MSV, Edwards ME, Elias SA, Finney BP, Fitzpatrick JJ, Funder SV, Herbert TD, Hinzman LD, Kaufman DS, MacDonald GM, Polyak L, Robock A, Serreze MC, Smol JP, Spielhagen R, White JWC, Wolfe AP, Wolff EW (2010) Temperature and precipitation history of the Arctic. Quat Sci Rev 29:1679–1715CrossRefGoogle Scholar
  49. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572CrossRefGoogle Scholar
  50. Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute, Helsinki. Reports 2012:1Google Scholar
  51. Porter SD (2008) Algal attributes: an autoecological classification of algal taxa collected by the National Water-Quality Assessment Program. US Geological Survey Data Series 329. Reston, VA, U.S. Geological SurveyGoogle Scholar
  52. Räsänen J, Kauppila T, Salonen V-P (2006) Sediment-based investigation of naturally or historically eutrophic lakes—implications for lake management. J Environ Manag 79:253–265CrossRefGoogle Scholar
  53. R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 25 Apr 2018
  54. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RW, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  55. Rühland KM, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35CrossRefGoogle Scholar
  56. Saarijärvi E (2005) Vieremän/Kiuruveden Saarisjärven fosforitaseet vuodelle 2004 sekä kunnostuksen pääpiirteet. Saarisjärven kunnostussuunnitelma. Vesi-Eko Oy, Water Eco, Kuopio (in Finnish) Google Scholar
  57. Saarnisto M (2000) Shoreline displacement and emergence of lake basins. In: Pajunen H (ed) Carbon in Finnish lake sediments. Geological Survey of Finland, Special paper 29, pp 25–34Google Scholar
  58. Sayer CD (2001) Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshw Biol 46:743–757CrossRefGoogle Scholar
  59. Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363CrossRefGoogle Scholar
  60. Simola H, Arvola H (2005) Lakes of Northern Europe. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook: Lake restoration and rehabilitation, vol 2. Blackwell Publishing Ltd, Oxford, pp 117–158Google Scholar
  61. Simpson GL (2012) Analogue methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Data handling and numerical techniques. Springer, Dordrecht, pp 495–522CrossRefGoogle Scholar
  62. Simpson GL, Oksanen J (2016) analogue: Analogue and Weighted averaging Methods for Palaeoecology. R package version 0.17-0. Accessed 25 Apr 2018
  63. Soininen A (1961) Pohjois-Savon asuttaminen keski- ja uuden ajan vaihteessa. Historiallisia tutkimuksia LVIII, Suomen historiallinen seura, Helsinki (The colonization of Northern Savo in the 15th and 16th centuries, in Finnish)Google Scholar
  64. Soininen A (1974) Vanha maataloutemme, Maatalous ja maatalousväestö Suomessa perinnäisen maatalouden loppukaudella 1720-luvulta 1870-luvulle. Historiallisia tutkimuksia 96, Suomen historiallinen seura, Helsinki. (Old traditional agriculture in Finland in the 18th and 19th centuries, in Finnish)Google Scholar
  65. Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. Accessed on April 10, 2018
  66. Taavitsainen J-P, Simola H, Grönlund E (1998) Cultivation history beyond the periphery: early agriculture in the north European boreal forest. J World Prehist 12:199–253CrossRefGoogle Scholar
  67. Tammelin M, Kauppila T (2018) Quaternary landforms and basin morphology control the natural eutrophy of boreal lakes and their sensitivity to anthropogenic forcing. Front Ecol Evol 6:65. CrossRefGoogle Scholar
  68. Tammelin M, Kauppila T, Viitasalo M (2017) Factors controlling recent diatom assemblages across a steep local nutrient gradient in central-eastern Finland. Hydrobiologia 799:309–325CrossRefGoogle Scholar
  69. ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270):485–502CrossRefGoogle Scholar
  70. ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  71. Thompson R, Battarbee RW, O’Sullivan PE, Oldfield F (1975) Magnetic susceptibility of lake sediments. Limnol Oceanogr 20:687–698CrossRefGoogle Scholar
  72. Tikkanen M (2002) Long-term changes in lake and river systems in Finland. Fennia 180:31–42Google Scholar
  73. Tikkanen P, Palonen V, Jungner H, Keinonen J (2004) AMS facility at the University of Helsinki. Nucl Instr Meth Phys Res B 223–224:35–39CrossRefGoogle Scholar
  74. Union European (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L327:1–72Google Scholar
  75. Valiranta M, Salonen JS, Heikkilä M, Amon L, Helmens K, Klimaschewski A, Kuhry P, Kultti S, Poska A, Shala S, Veski S, Birks HH (2015) Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat Commun 6:6809. CrossRefGoogle Scholar
  76. Väliranta M, Weckström J, Siitonen S, Seppä H, Alkio J, Juutinen S, Tuittila E-S (2011) Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. J Paleolimnol 45:339–352CrossRefGoogle Scholar
  77. Vallinkoski V-M, Miettinen T, Aalto J (2010) Pohjois-Savon vesienhoidon toimenpideohjelma vuosille 2010–2015. Centre for Economic Development, Transport and the Environment of North Savo, reports 1/2010 (in Finnish)Google Scholar
  78. Vallinkoski V-M, Miettinen T, Aalto J (2016) Vesien tila hyväksi yhdessä, Pohjois-Savon vesienhoidon toimenpideohjelma vuosille 2016–2021. Centre for Economic Development, Transport and the Environment of North Savo, reports 1/2016 (in Finnish)Google Scholar
  79. van den Wollenberg AL (1977) Redundancy analysis—an alternative for canonical correlation analysis. Psychometrika 42:207–219CrossRefGoogle Scholar
  80. Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659CrossRefGoogle Scholar
  81. Weckström J, Liao M, Yu G, Amsinck S, Kauppila T, Qin B, Zhu G, Sarvala J, Weckström K, Tarvainen M, Kirkkala T, Nurminen L, Ventelä A-M (2015) Responses of aquatic ecosystems to environmental changes in Finland and China. Front Ecol Evol 3:126. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Geography and GeologyUniversity of TurkuTurkuFinland
  2. 2.Geological Survey of FinlandKuopioFinland
  3. 3.Ecomonitor OyJoensuuFinland

Personalised recommendations