Journal of Paleolimnology

, Volume 61, Issue 2, pp 129–145 | Cite as

Reconstruction of trophic state shifts over the past 90 years in a eutrophicated lake in western Switzerland, inferred from the sedimentary record of photosynthetic pigments

  • Stamatina MakriEmail author
  • Andrea Lami
  • Brigitte Lods-Crozet
  • Jean-Luc Loizeau
Original paper


Anthropogenic eutrophication can initiate vast and persistent ecosystem state changes in lakes. Such changes may be characterized by increased phytoplankton taxa variability, which can affect the effectiveness and time of lake recovery mechanisms. Lake Morat in Switzerland has undergone intense eutrophication in the twentieth century (phosphorous concentrations up to 150 μg L−1) caused by excessive nutrient loadings from agricultural intensification and urbanization. Phosphorous reduction measures since 1986, such as the ban of phosphates in detergents and decreased use of fertilizers in agriculture, have resulted in total phosphorous concentrations up to 20 μg L−1 today. Despite this drastic reduction of total phosphorous, total biomass production stays high. We investigate historical changes in the phytoplankton community during the eutrophication and re-oligotrophication periods by comparing historical limnological data with sediment pigment concentrations measured by HPLC and other geochemical proxies in a radiodated sediment core. For the last 90 years, we identified four major trophic state changes in Lake Morat. The first period (AD 1924–1937) is characterized by low pigment concentrations and nutrient inputs, with good oxygen conditions. This section represents trophic conditions before the intensive eutrophication phase. The second period (AD 1937–1970) revealed an abrupt increase in pigment concentrations with higher primary production, cyanobacteria dominance and reduced oxygen levels. Oscillaxanthin indicated a Planktothrix rubescens dominance (AD 1954–1970) with concentrations up to 800 nmol g−1 OM. Their decline after AD 1970 suggests the initiation of an intense eutrophication phase (AD 1970–1983) associated with the dominance of other cyanobacteria species, higher total phosphorous inputs, and intense anoxia. In the restoration period (AD 1983–2014), there was a shift in the phototrophic community from cyanobacteria to green algae dominance, yet some cyanobacteria species remain present. Rapid phytoplankton community changes were identified in the studied period, yet overall primary production response was low. Limnological data revealed a delay of phosphorous reduction due to phosphorous recycling from the sediments. The observation of complex lake ecosystem reactions to prolonged eutrophication and subsequent re-oligotrophication, as shown by the paleolimnological and limnological data in this study, emphasize the importance of careful lake management to revert eutrophication back to historical reference biomass values.


Phytoplankton community composition Cyanobacteria Global change Re-oligotrophication Paleolimnology HPLC 



The University of Geneva and the Hans Sigrist Foundation (Grant No: 200021_172586) funded this research. We thank the Institute of Ecosystem Study in Pallanza, Italy for hosting the HPLC analysis and the Department of Earth Sciences at the University of Bern for XRF scanning, under the supervision of Dr. Hendrik Vogel. We thank Prof. Dr. Daniel Ariztegui and Dr. Camille Thomas for their help with CN analysis. Many thanks to Tiago André Adriao Silva and Philippe Arpagaus for their help in the field. The BENEFRI group led by the cantons of Bern, Fribourg, Neuchâtel and Vaud for providing the lake limnological data. Special thanks to Prof. Dr. Martin Grosjean for commenting on the manuscript. We would also like to acknowledge journal reviewers for their constructive comments and editorial work.


  1. Anderson J, Jeppesen E, Søndergaard M (2005) Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshw Biol 50:1589–1593CrossRefGoogle Scholar
  2. Anneville O, Ginot V, Angeli N (2002) Restoration of Lake Geneva: expected versus observed responses of phytoplankton to decreases in phosphorus. Lakes Reserv Res Manag 7:67–80CrossRefGoogle Scholar
  3. Appleby P (2001) Chronostratigraphic techniques in recent sediments. In: Last W, Smol J (eds) Tracking environmental change using lake sediments. Springer, Dordrecht, pp 171–203Google Scholar
  4. Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw Biol 50:1772–1780CrossRefGoogle Scholar
  5. BENEFRI (2017) Les 3 Lacs: La surveillance de l’état qualitatif des lacs de Morat, Neuchâtel et Bienne. Accessed 24 July 2017
  6. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771CrossRefGoogle Scholar
  7. Cottingham KL, Rusak JA, Leavitt PR (2000) Increased ecosystem variability and reduced predictability following fertilisation: evidence from palaeolimnology. Ecol Lett 3:340–348CrossRefGoogle Scholar
  8. Davaud E (1976) Contribution à l’étude géochimique et sédimentologique des dépôts lacustres récents (Lac de Morat, Suisse). Thèse no 1475, Fac. Sci. Université de Genève, p 129Google Scholar
  9. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Res 44:242–248Google Scholar
  10. Dirren S, Pitsch G, Silva MOD, Posch T (2017) Grazing of Nuclearia thermophila and Nuclearia delicatula (Nucleariidae, Opisthokonta) on the toxic cyanobacterium Planktothrix rubescens. Eur J Protistol 60:87–101CrossRefGoogle Scholar
  11. Dokulil MT, Teubner K (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshw Biol 50:1594–1604CrossRefGoogle Scholar
  12. Dokulil MT, Teubner K (2012) Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698:29–46CrossRefGoogle Scholar
  13. Dreßler M, Hübener T, Görs S et al (2007) Multi-proxy reconstruction of trophic state, hypolimnetic anoxia and phototrophic sulphur bacteria abundance in a Dimictic Lake in Northern Germany over the past 80 years. J Paleolimnol 37:205–219CrossRefGoogle Scholar
  14. EAWAG (1960) Der Murtensee. Sein gegenwärtiger chemisch-biologischer Zustand. Die Herkunft der eutrophierenden Stoffe. Seesanierung—Schutz vor Verunreinigung. Gesamtbericht über die von der Eawag in den Jahren 1954/1955 durchgeführten Erhebungen. Zürich, p 59Google Scholar
  15. Grüneberg B, Rücker J, Nixdorf B, Behrendt H (2011) Dilemma of non-steady state in lakes—development and predictability of in-lake P concentration in Dimictic Lake Scharmützelsee (Germany) after abrupt load reduction. Int Rev Hydrobiol 96:599–621CrossRefGoogle Scholar
  16. Guilizzoni P, Lami A (2002) Paleolimnology: use of algal pigments as indicators. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 2306–2317Google Scholar
  17. Guilizzoni P, Bonomi G, Galanti G, Ruggiu D (1983) Paleolimnology: relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. In: Meriläinen J, Huttunen P, Battarbee RW (eds) Hydrobiologia. Kluwer Academic Publishers, The Hague, pp 103–106Google Scholar
  18. Guilizzoni P, Lami A, Marchetto A (1992) Plant pigment ratios from lakes sediments as indicators of recent acidification in alpine lakes. Limnol Oceanogr 37:1565–1569CrossRefGoogle Scholar
  19. Guthruf K, Maurer V, Pokorni B, Zeh M (2009) Le développement du phytoplancton et du plancton de crustacés (Brienzersee, Thunersee, Murtensee—Lac de Morat, Lac de Neuchâtel, Bielersee). Rapport. Édité par l’ AWA, SEN, SCPE. Berne, p 112Google Scholar
  20. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  21. Hertzberg S, Liaaen-Jensen S, Siegelman HW (1971) The carotenoids of blue-green algae. Phytochemistry 10:3121–3127CrossRefGoogle Scholar
  22. Jacquet S, Kerimoglu O, Rimet F et al (2014) Cyanobacterial bloom termination: the disappearance of Planktothrix rubescens from Lake Bourget (France) after restoration. Freshw Biol 59:2472–2487CrossRefGoogle Scholar
  23. Jenny J-P, Francus P, Normandeau A et al (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol 22:1481–1489CrossRefGoogle Scholar
  24. Jeppesen E, Søndergaard M, Jensen JP et al (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771CrossRefGoogle Scholar
  25. Kaste JM, Norton SA, Hess CT (2002) Environmental chemistry of beryllium-7. Miner Soc Am 50:271–289Google Scholar
  26. Koinig KA, Shotyk W, Lotter AF et al (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320CrossRefGoogle Scholar
  27. Konopka A (1982) Physiological ecology of a metalimnetic Oscillatoria rubescens population. Limnol Oceanogr 27:1154–1161CrossRefGoogle Scholar
  28. Kurmayer R, Jüttner F (1999) Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J Plankton Res 21:659–683CrossRefGoogle Scholar
  29. Lami A, Niessen F, Guilizzoni P et al (1994) Palaeolimnological studies of the eutrophication of volcanic Lake Albano (Central Italy). J Paleolimnol 10:181–197CrossRefGoogle Scholar
  30. Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28CrossRefGoogle Scholar
  31. Lang C (2000) Etat trophique du lac de Morat indiqué par le zoobenthos: tendance 1980–1998. Rev Suisse Zool 107:233–243CrossRefGoogle Scholar
  32. Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127CrossRefGoogle Scholar
  33. Leavitt PR, Hodgson DA (2001) Practical methods for analysis of sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Developments in paleoenvironmental research, tracking environmental changes using lake sediments, terrestrial, algal and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 295–325CrossRefGoogle Scholar
  34. Legnani E, Copetti D, Oggioni A et al (2005) Planktothrix rubescens’ seasonal dynamics and vertical distribution in Lake Pusiano (North Italy). J Limnol 64:61–73CrossRefGoogle Scholar
  35. Liechti P (1994) L’état des lacs en Suisse: Le Lac de Morat. Rapport, Cahier de l’environnement no 237. Édité par l’Office fédéral de l’environnement, des forêts et du paysage OFEFP. Berne, p 163Google Scholar
  36. Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology 41:353–361CrossRefGoogle Scholar
  37. Magny M, Peyron O, Bégeot C, Guiot J (2005) Quantitative reconstruction of mid-Holocene climatic variations in the northern Alpine foreland based on Lake Morat (Swiss Plateau) and Lake Annecy (French Pre-Alps) data. Boreas 34:434–444CrossRefGoogle Scholar
  38. Mantoura RFC, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314CrossRefGoogle Scholar
  39. Mardsen MW (1989) Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshw Biol 21:139–162CrossRefGoogle Scholar
  40. May RM (1977) Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269:471–477CrossRefGoogle Scholar
  41. Meyers PA, Benson LV (1988) Sedimentary biomarker and isotopic indicators of the paleoclimatic history of the Walker Lake basin, western Nevada. Org Geochem 13:807–813CrossRefGoogle Scholar
  42. Müller B, Schmid M (2009) Bilans du phosphore et de l’oxygène dans le lac de Morat. Rapport. Eawag—Institut fédéral suisse des sciences et technologies aquatiques, Kastanienbaum, p 42Google Scholar
  43. Oksanen J, Blanchet GF, Friendly M et al (2017) Community ecology package “vegan”. R package version 2.4-3Google Scholar
  44. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Reynolds S (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, OldendorfGoogle Scholar
  46. Rivier O (1936) Recherche hydrobiologique sur le Lac de Morat. Bull la Société Neuchâteloise des Sci Nat 61:66Google Scholar
  47. Roy S, Llewellyn C, Egeland ES, Johnsen G (eds) (2011) Phytoplankton pigments. Cambridge University Press, CambridgeGoogle Scholar
  48. Santschi PW, Schindler PW (1977) Chemical and geochemical studies of Lake Biel I. A mass balance for Lake Biel and its implications for the rates of erosion of the drainage area. Schweiz Z Hydrol 39:182–200Google Scholar
  49. Sas H (1989) Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag Richarz, Sankt AugustinGoogle Scholar
  50. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656CrossRefGoogle Scholar
  51. Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  52. Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363CrossRefGoogle Scholar
  53. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154CrossRefGoogle Scholar
  54. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207CrossRefGoogle Scholar
  55. Smol JP (2010) The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshw Biol 55:43–59CrossRefGoogle Scholar
  56. Swain EB (1985) Measurement and interpretation of sedimentary pigments. Freshw Biol 15:53–75CrossRefGoogle Scholar
  57. Swisstopo (2016) Swiss Federal Office of Topography. Accessed 7 March 2016
  58. Tsukada H, Tsujimura S, Nakahara H (2006) Effect of nutrient availability on the C, N, and P elemental ratios in the cyanobacterium Microcystis aeruginosa. Limnology 7:185–192CrossRefGoogle Scholar
  59. von Gunten L, Grosjean M, Kamenik C et al (2012) Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: methods and case studies. J Paleolimnol 47:583–600CrossRefGoogle Scholar
  60. Yacobi YZ, Mantoura RFC, Llewellyn CA (1991) The distribution of chlorophylls, carotenoids and their breakdown products in Lake Kinneret (Israel) sediments. Freshw Biol 26:1–10CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental SciencesUniversity of GenevaGeneva 4Switzerland
  2. 2.Institute of Geography and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Institute of Ecosystem Study (ISE-CNR)Verbania PallanzaItaly
  4. 4.Department F.-A. Forel for Environmental and Aquatic SciencesUniversity of GenevaÉpalingesSwitzerland

Personalised recommendations