Advertisement

Late Holocene hydrology of Lake Maharlou, southwest Iran, inferred from high-resolution sedimentological and geochemical analyses

  • Elodie Brisset
  • Morteza Djamali
  • Edouard Bard
  • Daniel Borschneck
  • Emmanuel Gandouin
  • Marta Garcia
  • Lora Stevens
  • Kazuyo Tachikawa
Original paper
  • 25 Downloads

Abstract

Sedimentological (dry density, micro-facies analysis on thin-slides, X-ray diffraction, layer counting) and elemental analyses (X-ray fluorescence) of a 3.5-m-long sediment core (MAH-B) from saline Lake Maharlou (SW Iran) were used to infer hydrological changes over the last ~ 3800 years. The sediment consists of thin, alternating beds of evaporites (halite, gypsum), carbonates (calcite, aragonite) and detrital minerals (quartz, muscovite, chlorite). We interpret the data with respect to three main hydrologic conditions: (1) nearly complete desiccation of the lake, marked by frequent halite layers, (2) hypersaline conditions marked by gypsum abundance, (3) wet conditions, characterized by high river-borne terrigenous sediment input with high potassium content. Distinct flood layers indicate fluvial activity. From about 3800–2000 cal year BP, terrigenous sediment supply was high, with peaks at 3700–3650, 3500–3450, and 3400–3250 cal year BP. Evaporative conditions were not common. From ca. 2000 cal year BP to present, detrital minerals are less abundant, and the increase in gypsum abundance suggests drier climate with enhanced evaporation. Frequent desiccation events occurred from 1100 to 700 cal year BP. The late Holocene hydrology of Lake Maharlou corresponds well with records of dune formation and phases of river alluviation in Iran and the Arabian Peninsula, and with regional speleothem records. In addition to the influence of climate change on the lake hydrology, ancient humans modified water drainage in the catchment. Periods of subterranean tunnel (qanats) use correspond to dramatic shrinkage of the water body. We propose that climate changes drove long-term water shortages that were enhanced by anthropogenic activities, leading to more frequent desiccation of the lake during the last millennium.

Keywords

Paleohydrology Saline lake Evaporite Detrital supply Drought Human disturbance 

Notes

Acknowledgements

This study was funded by the Franco-German ANR/DGF titled PALEO-PERSEPOLIS (ANR-14-CE35-0026-01). The authors thank M. Köhler (MK Factory) for thin-section preparation and T. Goslar (Poznan Radiocarbon Laboratory) for 14C measurements and related details on sample preparation and blank correction. A. Naderi-Beni and M. Pourkerman from the Iranian National Institute for Oceanography and Atmospheric Sciences are thanked for their help with the coring operation. We are grateful to the reviewers and M. Brenner (Editor in Chief of JOPL) for their salient suggestions for improvement of the manuscript.

References

  1. Abarghouei HB, Zarch MAA, Dastorani MT, Kousari MR, Zarch MS (2011) The survey of climatic drought trend in Iran. Stoch Environ Res Risk Assess 25:851CrossRefGoogle Scholar
  2. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45:W10434CrossRefGoogle Scholar
  3. Ahmady-Birgani H, Mirnejad H, Feiznia S, McQueen KG (2015) Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmos Environ 119:262–272CrossRefGoogle Scholar
  4. Al Tikriti WY (2002) The south-east Arabian origin of the falaj system. Proc Sem Arab Stud 32:117–138Google Scholar
  5. Alijani B, Harman JR (1985) Synoptic climatology of precipitation in Iran. Ann Assoc Am Geogr 75:404–416CrossRefGoogle Scholar
  6. Aubert C, Brisset E, Djamali M, Sharifi A, Ponel P, Gambin B, Azirani TA, Guibal F, Lahijani H, Beni AN, de Beaulieu J-L, Pourmand A, Andrieu-Ponel V, Thiéry A, Gandouin E (2017) Late glacial and early Holocene hydroclimate variability in northwest Iran (Talesh Mountains) inferred from chironomid and pollen analysis. J Paleolimnol 58:151–167CrossRefGoogle Scholar
  7. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  8. Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  9. Böning P, Bard E (2009) Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments. Geochim Cosmochim Acta 73:6771–6788CrossRefGoogle Scholar
  10. Bowler JM (1986) Spatial variability and hydrologic evolution of Australian lake basins: analogue for pleistocene hydrologic change and evaporite formation. Palaeogeogr Palaeoclimatol Palaeoecol 54:21–41CrossRefGoogle Scholar
  11. Brauer A, Casanova J (2001) Chronology and depositional processes of the laminated sediment record from Lac d’Annecy, French Alps. J Paleolimnol 25:163–177CrossRefGoogle Scholar
  12. Brayshaw DJ, Black E, Hoskins B, Slingo J (2011) Past climates of the Middle East. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment and society in the Jordan Valley. International Hydrology Series. Cambridge University Press, Cambridge, pp 25–50CrossRefGoogle Scholar
  13. Brisset E, Miramont C, Anthony EJ, Bruneton H, Rosique T, Sivan O (2014) Sediment budget quantification of a sub-Alpine river catchment since the end of the last glaciation. CATENA 114:169–179CrossRefGoogle Scholar
  14. Brisset E, Guiter F, Miramont C, Troussier T, Sabatier P, Poher Y, Cartier R, Arnaud F, Malet E, Anthony EJ (2017) The overlooked human influence in historic and prehistoric floods in the European Alps. Geology 45:347–350CrossRefGoogle Scholar
  15. Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509:23–27CrossRefGoogle Scholar
  16. Czymzik M, Brauer A, Dulski P, Plessen B, Naumann R, von Grafenstein U, Scheffler R (2013) Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany). Quat Sci Rev 61:96–110CrossRefGoogle Scholar
  17. Daryaee T (2014) Sasanian Persia: the rise and fall of an empire. I. B. Tauris, London, p 311Google Scholar
  18. Dearing JA (2013) Why Future Earth needs lake sediment studies. J Paleolimnol 49:537–545CrossRefGoogle Scholar
  19. Degen T, Sadki M, Bron E, König U, Nénert G (2014) The highscore suite. Powder Diffr 29:13–18CrossRefGoogle Scholar
  20. Djamali M, de Beaulieu J-L, Andrieu-Ponel V, Berberian M, Miller NF, Gandouin E, Lahijani H, Shah-Hosseini M, Ponel P, Salimian M, Guiter F (2009a) A late Holocene pollen record from Lake Almalou in NW Iran: evidence for changing land-use in relation to some historical events during the last 3700 years. J Archaeol Sci 36:1364–1375CrossRefGoogle Scholar
  21. Djamali M, de Beaulieu J-L, Miller NF, Andrieu-Ponel V, Ponel P, Lak R, Sadeddin N, Akhani H, Fazeli H (2009b) Vegetation history of the SE section of the Zagros Mountains during the last five millennia; a pollen record from the Maharlou Lake, Fars Province, Iran. Veget Hist Archaeobot 18:123–136CrossRefGoogle Scholar
  22. Djamali M, Ponel P, Andrieu-Ponel V, de Beaulieu J-L, Guibal F, Miller NF, Ramezani E, Berberian M, Lahijani H, Lak R (2010a) Notes on arboricultural and agricultural practices in ancient Iran based on new pollen evidence. Paléorient 36:175–188CrossRefGoogle Scholar
  23. Djamali M, Ponel P, Delille T, Thiéry A, Asem A, Andrieu-Ponel V, de Beaulieu J-L, Lahijani H, Shah-Hosseini M, Amini A (2010b) A 200,000-year record of the brine shrimp Artemia (Crustacea: Anostraca) remains in Lake Urmia, NW Iran. Int J Aquat Sci 1:14–18Google Scholar
  24. Dumas D, Mietton M, Humbert J (2003) Le fonctionnement hydroclimatique de la cuvette de Maharlou (Iran). Sécheresse 14:1–8Google Scholar
  25. Faghih A, Samani B, Kusky T, Khabazi S, Roshanak R (2012) Geomorphologic assessment of relative tectonic activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geol J 47:30–40CrossRefGoogle Scholar
  26. Fattahi M (2015) OSL dating of the Miam Qanat (Kāriz) system in NE Iran. J Archaeol Sci 59:54–63CrossRefGoogle Scholar
  27. Fayazi F, Lak R, Nakhaei M (2007) Hydrochemistry and brine evolution of Maharlou saline lake, Southwest of Iran. Carbonate Evaporite 22:33–42CrossRefGoogle Scholar
  28. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian Monsoon recorded in a stalagmite from Southern Oman. Science 300:1737–1739CrossRefGoogle Scholar
  29. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  30. Flohr P, Fleitmann D, Zorita E, Sadekov A, Cheng H, Bosomworth M, Edwards L, Matthews W, Matthews R (2017) Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern Iraq. Geophys Res Lett 44:2016GL071786CrossRefGoogle Scholar
  31. Frye RN (1984) The history of ancient Iran, vol 7. CH Beck edition, MunschenGoogle Scholar
  32. Goudie AS, Colls A, Stokes S, Parker A, White K, Al-Farraj A (2000) Latest Pleistocene and Holocene dune construction at the north-eastern edge of the Rub Al Khali, United Arab Emirates. Sedimentology 47:1011–1021CrossRefGoogle Scholar
  33. Hamidi M, Kavianpour MR, Shao Y (2014) Numerical simulation of dust events in the Middle East. Aeolian Res 13:59–70CrossRefGoogle Scholar
  34. Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Mineral Soc Am Spec Paper 3:270–290Google Scholar
  35. Jamali M, Moghimi E, Jafarpour Z, Kardovani P (2015) Spatial analysis of geomorphological hazards of urban development in the Banks of Khoshk River in Shiraz, Iran. J Spat Anal Environ Hazards 2:51–61CrossRefGoogle Scholar
  36. Jones MD, Roberts CN (2008) Interpreting lake isotope records of Holocene environmental change in the Eastern Mediterranean. Quat Int 181:32–38CrossRefGoogle Scholar
  37. Jones MD, Roberts CN, Leng MJ, Türkeş M (2006) A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34:361–364CrossRefGoogle Scholar
  38. Jones MD, Djamali M, Holmes J, Weeks L, Leng MJ, Lashkari A, Alamdari K, Noorollahi D, Thomas L, Metcalfe SE (2015) Human impact on the hydroenvironment of Lake Parishan, SW Iran, through the late-Holocene. Holocene 25:1651–1661CrossRefGoogle Scholar
  39. Juggins S (2012) C2 v.1.5, User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, NewcastleGoogle Scholar
  40. Kehl M, Frechen M, Skowronek A (2009) Nature and age of Late Quaternary basin fill deposits in the Basin of Persepolis/Southern Iran. Lower Latitudes Loess-Dust Transport Past and Present. Quat Int 196:57–70CrossRefGoogle Scholar
  41. Kelts K, Shahrabi M (1986) Holocene sedimentology of hypersaline Lake Urmia, Northwestern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 54:105–130CrossRefGoogle Scholar
  42. Kowsar A, Reza Khooban M, Hossein Borhan M (2009) Envelope curves for extreme flood events in SW Iran. In: Proceedings of 5th international conference on rain water cistern systems, Taiwan, pp 210–219Google Scholar
  43. Kroonenberg SB, Abdurakhmanov GM, Badyukova EN, van der Borg K, Kalashnikov A, Kasimov NS, Rychagov GI, Svitoch AA, Vonhof HB, Wesselingh FP (2007) Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat Int 173:137–143CrossRefGoogle Scholar
  44. Last WM, Schweyen TH (1983) Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105:245–263CrossRefGoogle Scholar
  45. Lückge A, Doose-Rolinski H, Khan AA, Schulz H, von Rad U (2001) Monsoonal variability in the northeastern Arabian Sea during the past 5000 years: geochemical evidence from laminated sediments. Palaeogeogr Palaeoclimatol Palaeoecol 167:273–286CrossRefGoogle Scholar
  46. Magee P (2005) The chronology and environmental background of Iron Age settlement in Southeastern Iran and the question of the origin of the Qanat irrigation system. Iran Antiq 40:217–231CrossRefGoogle Scholar
  47. Manuel M, Lightfoot D, Fattahi M (2017) The sustainability of ancient water control techniques in Iran: an overview. Water Hist 10:1–18Google Scholar
  48. Mardaneh M, Keshtkar S (2013) Groundwater flood risk “Khoshk” river in Shiraz. J Appl Environ Biol Sci 3:14–22Google Scholar
  49. Masih I, Uhlenbrook S, Maskey S, Smakhtin V (2011) Streamflow trends and climate linkages in the Zagros Mountains, Iran. Clim Change 104:317–338CrossRefGoogle Scholar
  50. Matter A, Mahjoub A, Neubert E, Preusser F, Schwalb A, Szidat S, Wulf G (2016) Reactivation of the Pleistocene trans-Arabian Wadi ad Dawasir fluvial system (Saudi Arabia) during the Holocene humid phase. Geomorphology 270:88–101CrossRefGoogle Scholar
  51. Melville C (1984) Meteorological hazards and disasters in Iran: a preliminary survey to 1950. Iran 22:113–150CrossRefGoogle Scholar
  52. Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, Anderssohn J, Zschau J (2008) Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys Res Lett 35:L16403CrossRefGoogle Scholar
  53. Nabavi SO, Haimberger L, Samimi C (2016) Climatology of dust distribution over West Asia from homogenized remote sensing data. Aeolian Res 21:93–107CrossRefGoogle Scholar
  54. Naderi Beni A, Lahijani H, Pourkerman M, Jokar R, Hosseindoust M, Marriner N, Djamali M, Andrieu-Ponel V, Kamkar A (2014) Caspian Sea-level changes at the end of Little Ice Age and its impacts on the avulsion of the Gorgan River: a multidisciplinary case study from the southeastern flank of the Caspian Sea. Méditerr 122:145–155CrossRefGoogle Scholar
  55. Neugebauer I, Schwab MJ, Waldmann ND, Tjallingii R, Frank U, Hadzhiivanova E, Naumann R, Taha N, Agnon A, Enzel Y, Brauer A (2016) Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments. Clim Past 12:75–90CrossRefGoogle Scholar
  56. Parker AG, Goudie AS, Stokes S, White K, Hodson MJ, Manning M, Kennet D (2006) A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quat Res 66:465–476CrossRefGoogle Scholar
  57. Rahimpour-Bonab H, Abdi L (2012) Sedimentology and origin of Meyghan lake/playa deposits in Sanandaj–Sirjan zone, Iran. Carbonates Evaporites 27:375–393CrossRefGoogle Scholar
  58. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  59. Rezaei A, Zare M, Raeisi E, Ghanbari RN (2013) Interaction of a fresh water lake and a karstic spring via a syncline fold. Groundwater 51:305–312Google Scholar
  60. Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeolian Res 10:103–109CrossRefGoogle Scholar
  61. Rigot JB (2010) Dynamique de la rivière Poulvar et morphogenèse de la plaine de Tang-i Bulaghi (Fars, Iran) à l’Holocène. Premiers résultats. Géomorphologie 16:57–72CrossRefGoogle Scholar
  62. Rinaldi M, Wyżga B, Surian N (2005) Sediment mining in alluvial channels: physical effects and management perspectives. River Res Appl 21:805–828CrossRefGoogle Scholar
  63. Rivaz N, Musavi-Jahromi SH (2012) Effect of bridges on the river hydrograph characteristics along the ephemeral rivers system. World Appl Sci J 19:248–256Google Scholar
  64. Rychagov GI (1997) Holocene oscillations of the Caspian Sea, and forecasts based on palaeogeographical reconstructions. Quat Int 41:167–172CrossRefGoogle Scholar
  65. Salami H, Shahnooshi N, Thomson KJ (2009) The economic impacts of drought on the economy of Iran: an integration of linear programming and macroeconometric modelling approaches. Participation and Evaluation for Sustainable River Basin Governance. Ecol Econ 68:1032–1039CrossRefGoogle Scholar
  66. Schmidt A, Quigley M, Fattahi M, Azizi G, Maghsoudi M, Fazeli H (2011) Holocene settlement shifts and palaeoenvironments on the Central Iranian Plateau: investigating linked systems. Holocene 21:583–595CrossRefGoogle Scholar
  67. Semsar Yazdi AA, Askarzadeh S (2007) A historical review on the Qanats and historic hydraulic structures of Iran since the first millennium BC. In: International history seminar on irrigation and drainage, Tehran, p 12Google Scholar
  68. Sharifi A, Pourmand A, Canuel EA, Ferer-Tyler E, Peterson LC, Aichner B, Feakins SJ, Daryaee T, Djamali M, Beni AN, Lahijani HAK, Swart PK (2015) Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: the hand that rocked the Cradle of Civilization? Quat Sci Rev 123:215–230CrossRefGoogle Scholar
  69. Siegenthaler C, Sturm M (1991) Slump induced surges and sediment transport in Lake Uri, Switzerland. Verh Internat Verein Limnol 24:955–958Google Scholar
  70. Snyder JA, Wasylik K, Fritz SC, Wright HE (2001) Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. Holocene 11:737–745CrossRefGoogle Scholar
  71. Stevens LR, Wright HE, Ito E (2001) Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. Holocene 11:747–755CrossRefGoogle Scholar
  72. Stevens LR, Ito E, Schwalb A, Wright HE (2006) Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran. Quat Res 66:494–500CrossRefGoogle Scholar
  73. Stevens LR, Djamali M, Andrieu-Ponel V, de Beaulieu J-L (2012) Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia, Iran. J Paleolimnol 47:645–660CrossRefGoogle Scholar
  74. Tourian MJ, Elmi O, Chen Q, Devaraju B, Roohi S, Sneeuw N (2015) A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sens Environ 156:349–360CrossRefGoogle Scholar
  75. Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40:1103–1123CrossRefGoogle Scholar
  76. Van Rampelbergh M, Fleitmann D, Verheyden S, Cheng H, Edwards L, De Geest P, De Vleeschouwer D, Burns SJ, Matter A, Claeys P, Keppens E (2013) Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen. Quat Sci Rev 65:129–142CrossRefGoogle Scholar
  77. Wilkinson TJ, Boucharlat R, Ertsen MW, Gillmore G, Kennet D, Magee P, Rezakhani K, Schacht TD (2012) From human niche construction to imperial power: long-term trends in ancient Iranian water systems. Water Hist 4:155–176CrossRefGoogle Scholar
  78. Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J (2017) Decline of the world’s saline lakes. Nat Geosci 10:816–821CrossRefGoogle Scholar
  79. Zarrin A, Ghaemi H, Azadi M, Mofidi A, Mirzaei E (2011) The effect of the Zagros Mountains on the formation and maintenance of the Iran Anticyclone using RegCM4. Meteorol Atmos Phys 112:91–100CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CNRS, IRD, UMR 7263 IMBE, Univ AvignonAix Marseille UnivAix-en-ProvenceFrance
  2. 2.IPHESTarragonaSpain
  3. 3.Àrea de PrehistòriaUniversitat Rovira i Virgili (URV)TarragonaSpain
  4. 4.CNRS, IRD, Coll France, CEREGEAix Marseille UnivAix-en-ProvenceFrance
  5. 5.Department of Geological SciencesCalifornia State UniversityLong BeachUSA

Personalised recommendations