Journal of Paleolimnology

, Volume 61, Issue 1, pp 99–110 | Cite as

New insights into the termination of the African Humid Period (5.5 ka BP) in central Ethiopia from detailed analysis of a diatom record

  • Vincent RoubeixEmail author
  • Françoise Chalié
Original paper


The termination of the African Humid Period in northern Africa has been described as abrupt, occurring within centuries, as well as gradual, in response to incremental decreases in summer insolation. This study examined the rapidity of the change in diatom assemblages over the period from 6.5 to 4.5 cal ka BP, in a core studied previously at a coarser resolution. This transition was characterized by high variability of assemblages, which could be related, in part, to changes in water conductivity, and potentially enhanced by a site-specific hydrological threshold or ecological salinity threshold. We hypothesize that the variations in diatom assemblages reflect climate fluctuations, which may have been an early warning signal of an impending climate regime shift.


African monsoon Climate change Early warning signals Regime shift Ecological thresholds 



We thank Jean-Charles Mazur (CEREGE) for slide preparation of the new analyzed samples. Sediment core samples were collected under the auspices of CNRS-INSU Programs PNEDC-ERICA (‘Environmental Research for Intertropical Climate in Africa’, R.Bonnefille, coord.), and ECLIPSE-CLEHA (‘CLimat, Environnement et dynamique des populations Humaines en Afrique de l’Est depuis 20,000 ans’, D. Williamson coord.). We are grateful to Keely Mills for valuable comments and suggestions that greatly improved the manuscript, and to an anonymous reviewer for helpful comments.


  1. Ayenew T (2007) Water management problems in the Ethiopian rift: challenges for development. J Afr Earth Sci 48:222–236CrossRefGoogle Scholar
  2. Battarbee R, Juggins S, Gasse F, Erson NJ, Bennion H, Cameron NG (2000) European Diatom Database Initiative (EDDI).
  3. Burrough SL, Thomas DSG (2013) Central southern Africa at the time of the African Humid Period: a new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quat Sci Rev 80:29–46CrossRefGoogle Scholar
  4. Carstensen J, Telford RJ, Birks HJB (2013) Diatom flickering prior to regime shift. Nature 498:E11CrossRefGoogle Scholar
  5. Chalié F, Gasse F (2002) Late Glacial–Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Palaeogeogr Palaeoclimatol Palaeoecol 187:259–283CrossRefGoogle Scholar
  6. Cocquyt C (1998) Diatoms from the northern basin of Lake Tanganyika. Bibliotheca Diatomologica 39, Stuttgart, 275 ppGoogle Scholar
  7. Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci USA 105:14308–14312CrossRefGoogle Scholar
  8. David WR (2016) labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0.
  9. deMenocal P, Bond G (1997) Holocene climate less stable than previously thought. EOS Trans Am Geophys Union 78:447–454CrossRefGoogle Scholar
  10. deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361CrossRefGoogle Scholar
  11. Ellis N, Smith SJ, Pitcher CR (2012) Gradient forests: calculating importance gradients on physical predictors. Ecology 93:156–168CrossRefGoogle Scholar
  12. Foley JA, Coe MT, Scheffer M, Wang GL (2003) Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in northern Africa. Ecosystems 6:524–539CrossRefGoogle Scholar
  13. Gasse F (1986) East African diatoms: taxonomy, ecological distribution. Bibliotheca Diatomologica 11. Cramer, Berlin, 201 ppGoogle Scholar
  14. Gasse F (2001) Paleoclimate-hydrological changes in Africa. Science 292:2259–2260CrossRefGoogle Scholar
  15. Gasse F, Juggins S, Ben Khelifa L (1995) Diatom-based transfer functions for inferring past hydrochemical characteristics of African Lakes. Palaeogeogr Palaeoclimatol Palaeoecol 117:31–54CrossRefGoogle Scholar
  16. Gibert E, Travi Y, Massault M, Chernet T, Barbecot F, Laggoun-Defarge F (1999) Comparing carbonate and organic AMS-14C ages in Lake Abiyata sediments (Ethiopia): hydrochemistry and paleoenvironmental implications. Radiocarbon 41:271–286CrossRefGoogle Scholar
  17. Gillespie R, Street-Perrott FA, Switsur R (1983) Post-glacial arid episodes in Ethiopia have implications for climate prediction. Nature 306:680–683CrossRefGoogle Scholar
  18. Hammer UT (1986) Saline Lake ecosystems of the world. Monographiae Biologicae, XI, Springer, Netherlands, 616 ppGoogle Scholar
  19. Hustedt F (1949) Exploration du Lac National Albert: Süsswasser Diatomen aus dem Albert-National Park in Belgisch-Kongo. Mission H. Damas (1935–36), Brussels, 199 ppGoogle Scholar
  20. Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev 64:20–32CrossRefGoogle Scholar
  21. Krammer K, Lange-Bertalot H (1986) Süsswasserflora von Mitteleuropa. Bacillariophyceae 1. Teil: Naviculaceae. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  22. Krammer K, Lange-Bertalot H (1988) Süsswasserflora von Mitteleuropa. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  23. Krammer K, Lange-Bertalot H (1991a) Süsswasserflora von Mitteleuropa. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  24. Krammer K, Lange-Bertalot H (1991b) Süsswasserflora von Mitteleuropa. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  25. Kröpelin S, Verschuren D, Lézine AM, Eggermont H, Cocquyt C, Francus P, Cazet JP, Fagot M, Rumes B, Russell JM, Darius F, Conley DJ, Schuster M, von Suchodoletz H, Engstrom DR (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768CrossRefGoogle Scholar
  26. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  27. Roubeix V, Danis PA, Feret T, Baudoin JM (2016) Identification of ecological thresholds from variations in phytoplankton communities among lakes: contribution to the definition of environmental standards. Environ Monit Assess 188:246. CrossRefGoogle Scholar
  28. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656CrossRefGoogle Scholar
  29. Seddon AWR, Froyd CA, Witkowski A, Willis KJ (2014) A quantitative framework for analysis of regime shifts in a Galapagos coastal lagoon. Ecology 95:3046–3055CrossRefGoogle Scholar
  30. Stuiver M, Reimer PJ (1993) Extended C-14 data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35:215–230CrossRefGoogle Scholar
  31. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083CrossRefGoogle Scholar
  32. Telford RJ, Lamb HF (1999) Groundwater-mediated response to Holocene climatic change recorded by the diatom stratigraphy of an Ethiopian crater lake. Quat Res 52:63–75CrossRefGoogle Scholar
  33. ter Braak CJF, Looman CWN (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11CrossRefGoogle Scholar
  34. Thomas ZA (2016) Using natural archives to detect climate and environmental tipping points in the earth system. Quat Sci Rev 152:60–71CrossRefGoogle Scholar
  35. Tierney JE, deMenocal PB (2013) Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum. Science 342:843–846CrossRefGoogle Scholar
  36. Walker B, Meyers JA (2004) Thresholds in ecological and social-ecological systems: a developing database. Ecol Soc 9(2):3.
  37. Wang R, Dearing JA, Langdon PG, Zhang EL, Yang XD, Dakos V, Scheffer M (2012) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492:419–422CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Irstea, UR RECOVER, Pôle R&D AFB-Irstea Hydroécologie des plans d’eauAix-en-Provence Cedex 5France
  2. 2.CNRS, IRD, Coll.France, CEREGEAix-Marseille UniversitéAix-en-ProvenceFrance

Personalised recommendations