Journal of Paleolimnology

, Volume 61, Issue 1, pp 37–52 | Cite as

Recent environmental changes inferred from sediments in a shallow lake of the Argentinian pampas

  • María Sofía PlastaniEmail author
  • Cecilia Laprida
  • Fernanda Montes de Oca
  • Julieta Massaferro
  • Héctor Osvaldo Panarello
  • Josefina Ramón Mercau
  • Andrea Lami
Original paper


The Pampas are fertile lowland plains that extend across east-central Argentina and are renowned for their agricultural importance. The low geomorphologic relief of the region accounts for the occurrence of numerous shallow lakes whose sediments constitute paleoenvironmental archives of the outcomes of natural processes and human activities in the Pampas. We identified the main forcing factors behind hydrological shifts during the past ca. 200 years in La Barrancosa, a shallow lake located in the southeastern Pampas. The data provide a historical context to better understand environmental changes in the area during the twentieth century. Variations in biological (ostracods, chironomids and pigments), geochemical and sedimentological variables were interpreted in terms of lake level and trophic state changes. The low diversity of biological assemblages and the autoecology of the ostracod and chironomid taxa suggest that during parts of the record assigned to the nineteenth century, near the end of the Little Ice Age, La Barrancosa was a shallow, ephemeral, subsaline wetland, indicating drier-than-present conditions. Thereafter, a hiatus from ca. AD 1860–1940 is attributed to denudation processes during the Pampas Dust Bowl drought of the 1930s. The onset of wetter conditions around 1940 brought higher lake levels and establishment of a perennial shallow lake, inferred mostly from shifts in sedimentological and geochemical variables. Marked variations in fossil pigments and in ostracod and chironomid assemblages reveal that the basin shifted from being endorheic to arheic around 1970, in spite of increased precipitation, forced by changes in global circulation patterns. This shift coincided with an inferred increase in primary production and was coeval with profound land use changes and technological innovations in the region. Further changes in sedimentological, geochemical and biological variables indicate that eutrophication accelerated from 1990 onwards, most likely as a consequence of the increase in planted area around the lake, massive application of fertilizer, and cultivation of pesticide-intensive transgenic soybeans. This study provides an historical perspective into ongoing environmental deterioration of shallow lakes in the Argentinian Pampas.


Shallow lakes Pampean plains Paleolimnology Twentieth century Environmental change 



This work was funded by the following institutions: Universidad de Buenos Aires (Argentina), through Project UBACyT 20020110100153; Agencia Nacional de Promoción Científica y Tecnológica (Argentina), through Project PICT-2012-2931; and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) jointly with Ministero degli Affari Esteri (Italy), through Project MINCyT-MAE IT/10/10. MSP was awarded a grant by the Ministero degli Affari Esteri (Italy) for a scientific stay at the Istituto per lo Studio degli Ecosistemi (Italy). We thank Stefano Gerli for help with measurement of sedimentary pigments and Natalia García Chapori for assistance with field tasks. We also thank two anonymous reviewers for their valuable comments, which helped improve an earlier version of the manuscript. This is the Contribution R-265 of the IDEAN (UBA_CONICET).


  1. Acuna-Soto R, Stahle DW, Cleaveland MK, Therrell MD (2002) Megadrought and megadeath in 16th century Mexico. Rev Bioméd 13:289–292CrossRefGoogle Scholar
  2. Agosta EA, Compagnucci RH (2008) The 1976/77 austral summer climate transition effects on the atmospheric circulation and climate in southern South America. J Clim 21:4365–4383CrossRefGoogle Scholar
  3. Allende L, Tell G, Zagarese H, Torremorell A, Pérez G, Bustingorry J, Escaray R, Izaguirre I (2009) Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624:45–60CrossRefGoogle Scholar
  4. Barros V, Castañeda DM (2000) Recent precipitation trends in Southern South America east of the Andes: an indication of climatic variability. In: Smolka P, Volkheimer W (eds) Southern hemisphere paleo- and neoclimates. Springer, New York, pp 187–206CrossRefGoogle Scholar
  5. Barrucand MG, Vargas WM, Rusti MM (2007) Dry conditions over Argentina and the related monthly circulation patterns. Meteorol Atmos Phys 98:99–114CrossRefGoogle Scholar
  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  7. Biggs J, von Fumetti S, Kelly-Quinn M (2016) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793:3–39CrossRefGoogle Scholar
  8. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  9. Boveri MB, Quirós R (2003) Trophic interactions in pampean shallow lakes: evaluation of silverside predatory effects in mesocosm experiments. Verh Int Ver Theor Angew Limnol 28:1274–1278Google Scholar
  10. Brodersen KP, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012CrossRefGoogle Scholar
  11. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55:720–730CrossRefGoogle Scholar
  12. Cobbaert D, Wong A, Bayley SE (2014) Precipitation-induced alternative regime switches in shallow lakes of the Boreal Plains (Alberta, Canada). Ecosystems 17:535–549CrossRefGoogle Scholar
  13. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  14. Ferreira JS, De Marco P, Mazáo GR Jr, Carvalho AR (2009) Chironomidae assemblage structure in relation to organic enrichment of an aquatic environment. Neotrop Entomol 38:464–471CrossRefGoogle Scholar
  15. Fonseca Leal JJ, Esteves FA, Callisto M (2004) Distribution of Chironomidae larvae in an Amazonian flood-plain lake impacted by bauxite tailings (Brazil). Amazon 18:109–123Google Scholar
  16. Fontana SL (2007) Radiocarbon chronologies of Holocene lacustrine sediments from the southern coast of Buenos Aires province, Argentina. Radiocarbon 49:103–116CrossRefGoogle Scholar
  17. Freiberg R, Nõmm M, Tõnno I, Alliksaar T, Nõges T, Kisand A (2011) Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake. Est J Earth Sci 60:91–101. CrossRefGoogle Scholar
  18. Fusé VS, Priano ME, Williams KE, Gere JI, Guzmán SA, Gratton R, Juliarena MP (2016) Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods. Environ Monit Assess 188:590–602CrossRefGoogle Scholar
  19. Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. In: Ogilvie AEJ, Jónsson T (eds) The Iceberg in the Mist: Northern research in pursuit of a “Little Ice Age”. Springer, Berlin, pp 52–82Google Scholar
  20. Guerra L, Piovano EL, Córdoba FE, Tachikawa K, Rostek F, Garcia M, Bard E, Sylvestre F (2017) Climate change evidences from the end of the Little Ice Age to the current warm period registered by Melincué Lake (Northern Pampas, Argentina). Quat Int 438:160–174CrossRefGoogle Scholar
  21. Guilizzoni P, Bonomi G, Galanti G, Ruggiu D (1983) Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103:103–106CrossRefGoogle Scholar
  22. Guilizzoni P, Lami A, Marchetto A (1992) Plant pigment ratios from lake sediments as indicators of recent acidification in alpine lakes. Limnol Oceanogr 37:1565–1569CrossRefGoogle Scholar
  23. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  24. Havens KE (1991) Fish-induced sediment resuspension: effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J Plankton Res 13:1163–1176CrossRefGoogle Scholar
  25. Herzer H (2003) Flooding in the pampean region of Argentina: the Salado basin. In: Kreimer A, Arnold M, Carlin A (eds) Building safer cities: the future of disaster risk. The World Bank, Washington, pp 137–147Google Scholar
  26. Hogg AG, Hua Q, Blackwell PG, Buck CE, Guilderson TP, Heaton TJ, Niu M, Palmer J, Reimer PJ, Reimer R, Turney CSM, Zimmerman SRH (2013) ShCal13 Southern Hemisphere calibration, 0–50,000 calyr BP. Radiocarbon 55:1889–1903CrossRefGoogle Scholar
  27. IPCC (2013) Climate change 2013: the physical science base, summary for policymakers; Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Accessed 6 Mar 2017
  28. Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. In: Proceedings of Shallow Lakes’ 98. Springer, Dordrecht, pp 217–231Google Scholar
  29. Lami A, Guilizzoni P, Marchetto A (2000) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28CrossRefGoogle Scholar
  30. Lami A, Musazzi S, Marchetto A, Buchaca T, Kernan M, Jeppesen E, Guilizzoni P (2009) Sedimentary pigments in 308 alpine lakes and their relation to environmental gradients. Adv Limnol 62:247–268Google Scholar
  31. Laprida C (2006) Ostrácodos recientes de la llanura pampeana, Buenos Aires, Argentina: ecología e implicancias paleolimnológicas. Ameghiniana 43:181–204Google Scholar
  32. Laprida C, Garcés V (2009) Cambios ambientales de épocas históricas en la pampa bonaerense en base a ostrácodos: historia hidrológica de la laguna de Chascomús. Ameghiniana 46:95–111Google Scholar
  33. Laprida C, Plastani MS, Irurzún A, Gogorza CS, Navas Izquierdo A, Valero-Garcés BL, Sinito AM (2014) Mid-late Holocene lake levels and trophic states of a shallow lake from the southern Pampa plain, Argentina. J Limnol 73:123–137CrossRefGoogle Scholar
  34. Leavitt PR, Sanford PR, Carpenter SR, Kitchell JF (1994) An annual record of production, planktivory and piscivory during whole-lake manipulations. J Paleolimnol 11:133–149CrossRefGoogle Scholar
  35. Llames ME, Del Giorgio PA, Zagarese H, Ferraro M, Izaguirre I (2013) Alternative states drive the patterns in the bacterioplankton composition in shallow Pampean lakes (Argentina). Environ Microbiol Rep 5:310–321CrossRefGoogle Scholar
  36. Macleod CJA, Falloon PD, Evans R, Haygarth PM (2012) The effects of climate change on the mobilization of diffuse substances from agricultural systems. In: Sparks DL (ed) Advances in agronomy. Elsevier Science and Technology. Academic Press, Waltham, pp 41–77Google Scholar
  37. Mechaly AS, Martínez DE, Cervellini PM (2003) Primer hallazgo de Pampacythere solum Whatley y Cholich, 1974 (Ostracoda, Limnocytheridae) viviente en el Salitral de La Vidriera, Provincia de Buenos Aires, Argentina. Proc V Jornadas Nacionales de Ciencias del Mar Argentina, p 139Google Scholar
  38. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  39. Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, Elbert J, González-Rouco F, Linsley BK, Moy AD, Mundo I, Raible CC, Steig EJ, van Ommen T, Vance T, Villalba R, Zinke J, Frank D (2014) Inter-hemispheric temperatura variability over the past millennium. Nat Clim Change 4:362–367CrossRefGoogle Scholar
  40. Peluso F, Grosman F, Castelain G, Othax N, Rodríguez L, Nostro FL (2011) Health risk by chlorinated pesticides in water bodies used for recreational bathing in Argentina. In: Stoytcheva M (ed) Pesticides: the impact of pesticides exposure. IN TECH publisher, Vienna, pp 179–206Google Scholar
  41. Pengue W (2005) Transgenic crops in Argentina: the ecological and social debt. Bull Sci Technol Soc 25:314–322CrossRefGoogle Scholar
  42. Pengue WA (2009) Cuestiones económico-ambientales de las transformaciones agrícolas en las Pampas. Probl Desarrollo 40:137–161Google Scholar
  43. Pérez S, Sierra E, Momo F, Massobrio M (2015) Changes in average annual precipitation in Argentina’s Pampa region and their possible causes. Climate 3:150–167CrossRefGoogle Scholar
  44. Podestá G, Bert F, Rajagopalan B, Apipattanavis S, Laciana C, Weber E, Easterling W, Katz R, Letson D, Menendez A (2009) Decadal climate variability in the Argentine Pampas: regional impacts of plausible climate scenarios on agricultural systems. Clim Res 40:199–210CrossRefGoogle Scholar
  45. Rapport DJ, Whitford WG (1999) How ecosystems respond to stress: common properties of arid and aquatic systems. Bioscience 49:193–203CrossRefGoogle Scholar
  46. Riera C, Pereira SG (2009) Irrigated agricultural production and adaptation to climate change in the Argentinean Pampas: an analysis from a socio-theoretical perspective. Int J Sustain Sci Stud 1:35–39Google Scholar
  47. Russell JM, Johnson TC (2007) Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño-Southern Oscillation variability. Geology 35:21–24CrossRefGoogle Scholar
  48. Sanger JE, Crowl GH (1979) Fossil pigments as a guide to the paleolimnology of Browns Lake, Ohio. Quat Res 11:342–352CrossRefGoogle Scholar
  49. Sanger JE, Gorham E (1972) Stratigraphy of fossil pigments as a guide to the postglacial history of Kirchner Marsh, Minnesota. Limnol Oceanogr 17:840–854CrossRefGoogle Scholar
  50. Santos M, Callil C, Fantin-Cruz I, Girard P (2013) Factors structuring the spatial distribution of Chironomidae larvae community in the floodplain of the northern Pantanal, Brazil. Acta Limnol Bras 25:131–139CrossRefGoogle Scholar
  51. Sosnovsky A, Quiros R (2006) El estado trófico de las pequeñas lagunas pampeanas (Argentina), su relación con la hidrología y la intensidad del uso de la tierra. Ecol Austral 16:115–124Google Scholar
  52. Stutz S, Borel CM, Fontana SL, del Puerto L, Inda H, García-Rodríguez F, Tonello MS (2010) Late Holocene climate and environments of the SE Pampa grasslands, Argentina, inferred from biological indicators in shallow, freshwater Lake Nahuel Rucá. J Paleolimnol 44:761–775CrossRefGoogle Scholar
  53. Stutz S, Borel CM, Fontana SL, Tonello MS (2012) Holocene changes in trophic states of shallow lakes from the Pampa plain of Argentina. Holocene 22:1263–1270CrossRefGoogle Scholar
  54. Tripaldi A, Zarate MA, Forman SL, Badger T, Doyle ME, Ciccioli P (2013) Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early-mid 20th century. Holocene 23:1731–1746CrossRefGoogle Scholar
  55. Viglizzo EF, Frank FC (2006) Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quat Int 158:122–126CrossRefGoogle Scholar
  56. Viglizzo EF, Roberto Z, Lertora F, López Gay E, Bernardos J (1997) Climate and land-use change in field-crop ecosystems of Argentina. Agric Ecosyst Environ 66:61–70CrossRefGoogle Scholar
  57. Viglizzo EF, Nosetto MD, Jobbágy EG, Ricard MF, Frank FC (2014) The ecohydrology of ecosystem transitions: a meta-analysis. Ecohydrology 8:911–921CrossRefGoogle Scholar
  58. Walker IR (2001) Midges: Chironomidae and related diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: zoological indicators. Springer, Dordrecht, pp 43–66CrossRefGoogle Scholar
  59. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  60. Wigdahl-Perry CR, Saros JE, Schmitz J, Calcote R, Rusak J, Anderson D, Hotchkiss S (2016) Response of temperate lakes to drought: a paleolimnological perspective on the landscape position concept using diatom-based reconstructions. J Paleolimnol 55:339–356CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Estudios Andinos “Don Pablo Groeber” (Universidad de Buenos Aires-CONICET)Ciudad Autónoma de Buenos AiresArgentina
  2. 2.CENAC (Administración de Parques Nacionales-CONICET)BarilocheArgentina
  3. 3.Instituto de Geocronología y Geología Isotópica (Universidad de Buenos Aires-CONICET)Ciudad Autónoma de Buenos AiresArgentina
  4. 4.Istituto per lo Studio degli Ecosistemi (CNR)Verbania PallanzaItaly

Personalised recommendations