Advertisement

Deciphering Molecular Virulence Mechanism of Mycobacterium tuberculosis Dop isopeptidase Based on Its Sequence–Structure–Function Linkage

  • R. Prathiviraj
  • P. ChellapandiEmail author
Article

Abstract

The pupylation pathway marks proteins for prokaryotic ubiquitin-like protein (Pup)-proteasomal degradation and survival strategy of mycobacteria inside of the host macrophages. Deamidase of Pup (Dop) plays a central role in the pupylation pathway. It is still a matter of investigation to know the function of Dop in virulence of mycobacterial lineage. Hence, the present study was intended to describe the sequence–structure–function–virulence link of Dop for understanding the molecular virulence mechanism of Mycobacterium tuberculosis H37Rv (Mtb). Phylogenetic analysis of this study indicated that Dop has extensively diverged across the proteasome-harboring bacteria. The functional part of Dop was converged across the pathogenic mycobacterial lineage. The genome-wide analysis pointed out that the pupylation gene locus was identical to each other, but its genome neighborhood differed from species to species. Molecular modeling and dynamic studies proved that the predicted structure of Mtb Dop was energetically stable and low conformational freedom. Moreover, evolutionary constraints in Mtb Dop were intensively analyzed for inferring its sequence–structure–function relationships for the full virulence of Mtb. It indicated that evolutionary optimization was extensively required to stabilize its local structural environment at the side chains of mutable residues. The sequence–structure–function–virulence link of Dop might have retained in Mtb by reordering hydrophobic and hydrogen bonding patterns in the local structural environment. Thus, the results of our study provide a quest to understand the molecular virulence and pathogenesis mechanisms of Mtb during the infection process.

Keywords

Dop isopeptidase Pupylation Ubiquitylation Unassigned peptidase Virulence Molecular simulation Molecular evolution Tuberculosis 

Notes

Acknowledgments

We thank all the family volunteers who participated in this study. We gratefully acknowledge colleagues at Bharathidasan University for helpful discussions and suggestions on developing the manuscript.

Author Contributions

PR performed the bioinformatics analyses of the study guided by CP. PR interpreted the data and wrote the manuscript. CP designed and coordinated the study. All authors read and approved the final manuscript.

Funding

Authors would like to thank the Life Science Research Board-Defense Research and Development Organization (DLS/81/48222/LSRB-249/BTB/2012), New Delhi, India, for financial assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10930_2019_9876_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (DOCX 226 kb)

References

  1. 1.
    Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Forrellad MA, Klepp LI, Gioffré A, García JSY, Morbidoni HR, Paz SantangeloMde L, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4:3–66PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wang L, Xu M, Southall N, Zheng W, Wang S (2016) A High-throughput assay for developing inhibitors of PhoP, A virulence factor of Mycobacterium tuberculosis. Combin Chem High Throughput Screen 19:855–864CrossRefGoogle Scholar
  4. 4.
    Global tuberculosis Report (2015) World Health Organization (http://www.who.int/tb/publications/global_report/en/)
  5. 5.
    Delogu G, Provvedi R, Sali M, Manganelli R (2015) Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 10:1177–1194PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Özcelik D, Barandun J, Schmitz N, Sutter M, Guth E, Damberger FF, Allain FH, Ban N, Weber-Ban E (2012) Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Nat Commun 3:1014PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Striebel F, Imkamp F, Özcelik D, Weber-Ban E (2014) Pupylation as a signal for proteasomal degradation in bacteria. Biochim Biophys Acta 1843:103–113PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH (2010) Depupylation of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39:821–827PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH (2006) Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 25:5423–5432PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang S, Burns-Huang KE, Janssen GV, Li H, Ovaa H, Hedstrom L, Darwin KH (2017) Mycobacterium tuberculosis proteasome accessory factor A (PafA) can transfer prokaryotic ubiquitin-like protein (Pup) between substrates. MBio.  https://doi.org/10.1128/mBio.00122-17 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bode NJ, Darwin KH (2014) The Pup-proteasome system of mycobacteria. Microbiol Spectr.  https://doi.org/10.1128/microbiolspec CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elharar Y, Roth Z, Hecht N, Rotkopf R, Khalaila I, Gur E (2016) Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system. Proc Natl Acad Sci USA 113:E1605–E1614PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Barandun J, Delley CL, Weber-Ban E (2012) The pupylation pathway and its role in mycobacteria. BMC Biol 10:95PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 15:205–218CrossRefGoogle Scholar
  16. 16.
    Burns KE, McAllister FE, Schwerdtfeger C, Mintseris J, Cerda-Maira F, Noens EE, Wilmanns M, Hubbard SR, Melandri F, Ovaa H, Gygi SP, Darwin KH (2012) Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase. J Biol Chem 287:37522–37529PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH (2010) Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol Microbiol 77:1123–1135PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Samanovic MI, Li H, Darwin KH (2013) The Pup-Proteasome System of Mycobacterium tuberculosis. Subcell Biochem 66:267–295PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tarazona D, Galarza M, Levano KS, Guio H (2016) Comparative genomic analysis of peruvian strains of Mycobacterium tuberculosis. Rev Peru Med Exp Salud Publica 33:256–263PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Letunic L, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedPubMedCentralGoogle Scholar
  25. 25.
    Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N (2002) Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18:S71–S77PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hao T, Peng W, Wang Q, Wang B, Sun J (2016) Reconstruction and application of protein-protein interaction network. Int J Mol Sci 17:E907PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mrvar A, Batagelj V (2016) Analysis and visualization of large networks with program package Pajek. Compl Adapt Syst Mod 4:6CrossRefGoogle Scholar
  31. 31.
    Feng Y, Wang Q, Wang T (2017) Drug target protein-protein interaction networks: a systematic perspective. Biomed Res Int 2017:1289259PubMedPubMedCentralGoogle Scholar
  32. 32.
    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14:617–623PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinf 71:261–277CrossRefGoogle Scholar
  37. 37.
    Sumathi K, Ananthalakshmi P, Roshan MN, Sekar K (2006) 3dSS: 3D structural superposition. Nucleic Acids Res 34:W128–W132PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78:1950–1958PubMedPubMedCentralGoogle Scholar
  40. 40.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  41. 41.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  42. 42.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  43. 43.
    De Moura DC, Bryksa BC, Yada RY (2014) In silico insights into protein-protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease. PLoS ONE 9:e104315PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sandler I, Abu-Qarn M, Aharoni A (2013) Protein co-evolution: how do we combine bioinformatics and experimental approaches. Mol BioSyst 9:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jeong JS, Kim D (2012) Reliable and robust detection of coevolving protein residues. Protein Eng Select 25:705–713CrossRefGoogle Scholar
  47. 47.
    Lee BC, Kim D (2009) A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics 25:2506–2513PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Schechter LM, Valenta JC, Schneider DJ, Collmer A, Sakk E (2012) Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae. PLoS ONE 7:e36038PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem J 449:581–594PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:W239–W242PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Worth CL, Preissner R, Blundell TL (2011) SDM-a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 39:W215–W222PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    De Brevern AG, Bornot A, Craveur P, Etchebest C, Gelly JC (2012) PredyFlexy: flexibility and local structure prediction from sequence. Nucleic Acids Res 40:W317–W322PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Huang LT, Gromiha MM (2010) First insight into the prediction of protein folding rate change upon point mutation. Bioinformatics 26:2121–2127PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chellapandi P (2014) Structural-functional integrity of hypothetical proteins identical to ADP ribosylation superfamily upon point mutations. Protein Pept Lett 21:722–735PubMedPubMedCentralGoogle Scholar
  55. 55.
    Prathiviraj R, Prisilla A, Chellapandi P (2015) Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine. J Biomol Struct Dyn 34:1317–1329PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Prisilla A, Prathiviraj R, Sasikala R, Chellapandi P (2016) Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. Infect Genet Evoln 44:17–27CrossRefGoogle Scholar
  57. 57.
    Murugan A, Prathiviraj R, Mothay D, Chellapandi P (2019) Substrate-imprinted docking of Agrobacterium tumefaciens uronate dehydrogenase for increased substrate selectivity. Int J Biol Macromol 140:1214–1225PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chou KC, Shen HB (2009) FoldRate: a web-server for predicting protein folding rates from primary sequence. Open Bioinf J 3:31–50CrossRefGoogle Scholar
  59. 59.
    Gromiha MM, Thangakani AM, Selvaraj S (2006) FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Res 34:W70–W74PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, Weber-Ban E (2010) Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 75:744–754PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E (2009) Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16:647–651PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Striebel F, Hunkeler M, Summer H, Weber-Ban E (2010) The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup’s N-terminus. EMBO J 29:1262–1271PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chen X, Li C, Wang L, Liu Y, Li C, Zhang J (2016) The mechanism of Mycobacterium smegmatis PafA self-pupylation. PLoS ONE 11:e0151021PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Burns KE, Liu WT, Boshoff HI, Dorrestein PC, Barry CE (2009) Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rohlfing AE, Dove SL (2014) Coordinate control of virulence gene expression in Francisella tularensis involves direct interaction between key regulators. J Bacteriol 196:3516–3526PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Buckee CO, Recker M (2012) Evolution of the multi-domain structures of virulence genes in the human malaria parasite Plasmodium falciparum. PLoS Comput Biol 8:e1002451PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Talevich E, Kannan N (2013) Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. BMC Evol Biol 13:117PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chellapandi P, Prisilla A (2017) Structure, function and evolution of Clostridium botulinum C2 and C3 toxins: insight to poultry and veterinary vaccines. Curr Protein Pept Sci 18:412–424PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Prisilla A, Prathiviraj R, Chellapandi P (2017) Molecular evolutionary constraints that determine the avirulence state of Clostridium botulinum C2 toxin. J Mol Evol 86:174–186CrossRefGoogle Scholar
  71. 71.
    Chellapandi P, Prathiviraj R, Prisilla A (2018) Molecular evolution and functional divergence of IspD homologs in malarial parasites. Infect Genet Evol 65:340–349PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chellapandi P, Prathiviraj R, Prisilla A (2019) Deciphering structure, function and mechanism of Plasmodium IspD homologs from their evolutionary imprints. J Comput Aided Mol Des 33:419–436PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Merkx R, Burns KE, Slobbe P, El Oualid F, El Atmioui D, Darwin KH, Ovaa H (2012) Synthesis and evaluation of a selective fluorogenic Pup derived assay reagent for Dop, a potential drug target in Mycobacterium tuberculosis. ChemBioChem 13:2056–2060PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sarabojia K, Gromihab MM, Ponnuswamy MN (2005) Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes. Comput Biol Chem 29:25–35CrossRefGoogle Scholar
  75. 75.
    Kajander T, Kahn PC, Passila SH, Cohen DC, Lehtiö L, Adolfsen W, Warwicker J, Schell U, Goldman A (2000) Buried charged surface in proteins. Structure 8:1203–1214PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wu HY, Cheng YS (2014) Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion. Acta Crystallogr F Struct Biol Commun 70:378–383PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sterthoff C, Lang AE, Schwan C, Tauch A, Aktories K (2010) Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Infect Immun 78:1468–1474PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kulshreshtha S, Chaudhary V, Goswami GK, Mathur N (2016) Computational approaches for predicting mutant protein stability. J Comput Aided Mol Des 30:401–412PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zhao D, Fukuyama S, Yamada S, Lopes TJ, Maemura T, Katsura H, Ozawa S, Watanabe M, Neumann G, Kawaoka Y (2015) Molecular determinants of virulence and stability of a reporter-expressing H5N1 influenza A virus. J Virol 89:11337–11346PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10:709–720PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Maguid S, Fernández-Alberti S, Parisi G, Echave J (2006) Evolutionary conservation of protein backbone flexibility. J Mol Evol 63:448–457PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface.  https://doi.org/10.1098/rsif.2014.0419 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ho BK, Agard DA (2010) Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Protein Sci 19:398–411PubMedPubMedCentralGoogle Scholar
  84. 84.
    Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochem 50:10422–10430CrossRefGoogle Scholar
  85. 85.
    Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D (1997) Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Biol 4:805–809PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8:737–742PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Devulder G, Pérouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations