Interaction of a Model Hydrophobic Drug Dimethylcurcumin with Albumin Nanoparticles

  • R. P. Das
  • B. G. SinghEmail author
  • A. KunwarEmail author
  • K. I. Priyadarsini


The aim of present study was to investigate the binding interactions of a model hydrophobic molecule, dimethylcurcumin (DMC) with nanoparticle form of bovine serum albumin (BSA) using fluorescence spectroscopy techniques. For this, BSA nanoparticles (size = 62.0 ± 3.5 nm, molecular weight = 11,243 ± 3445 kD) prepared by thermal denaturation method was mixed with DMC in solution and monitored for fluorescence emission of tryptophan (Trp) residue as well as DMC separately. The emission maximum of DMC in nanoparticles form exhibited more blue sift and quenched the excited state of tryptophan (Trp) by six fold higher than in the native form of BSA. By analyzing Trp fluorescence, the mean binding constant (K) estimated for the interaction of DMC with native and nanoparticles forms of BSA was 2.7 ± 0.4 × 104 M−1 and 1.5 ± 0.5 × 105 M−1 respectively. Together these results suggested that DMC experienced a more rigid environment in nanoparticles than in native form of BSA. Additionally the above determined K values were in agreement with those reported previously by absorption techniques. Further direct energy transfer was observed between Trp and DMC, using which the distance (r) calculated between them was 28.25 ± 0.27 Ǻ in BSA native. Similar analysis involving BSA nanoparticle and DMC revealed a distance of 24.25 ± 1.05 Ǻ between the hydrophobic core and the ligand. Finally interaction of DMC with BSA was validated through molecular docking studies, which indicated sub-domain IIA as the binding site of DMC. Thus it is concluded that intrinsic fluorescence of protein can be utilized to study the interaction of its different physical forms with any hydrophobic ligand.


Albumin Nanoparticles Fluorescence spectroscopy Binding constant Fluorescence energy transfer 




Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent


Research Involving Human Participants or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10930_2019_9866_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1233 kb)


  1. 1.
    Joye IJ, McClements DJ (2016) Curr Top Med Chem 16(9):1026–1039CrossRefGoogle Scholar
  2. 2.
    Joye IJ, McClements DJ (2014) Curr Opin Colloid Interface Sci 19(5):417–427CrossRefGoogle Scholar
  3. 3.
    Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Biomed Res Int. 2014:Article ID 180549. (
  4. 4.
    Corradini MG, Demol M, Boeve J, Ludescher RD, Joye IJ (2017) Food Biophys 12(2):211–221CrossRefGoogle Scholar
  5. 5.
    Kim Y, Ko SM, Nam JM (2016) Asian J Chem 11(13):1869–1877CrossRefGoogle Scholar
  6. 6.
    Curry S (2009) Drug Metab Pharmacokinet 24(4):342–357CrossRefGoogle Scholar
  7. 7.
    Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64(9):1355–1374CrossRefGoogle Scholar
  8. 8.
    Roy S (2016) J Pharm Toxicol Stud 4(2):7–17Google Scholar
  9. 9.
    Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2016) Nanotechnol Sci Appl 10:11–21CrossRefGoogle Scholar
  10. 10.
    Yu Z, Yu M, Zhang Z, Hong G, Xiong Q (2014) Nanoscale Res Lett 9(1):343–350CrossRefGoogle Scholar
  11. 11.
    Miele E, Spinelli PG, Miele E, Tomao F, Tomao S (2009) Int J Nanomed 4(7):99–105Google Scholar
  12. 12.
    Nicolas LF, Chubukov V, Clark LA, Brown S, Teresa HG (2005) Protein Sci 14(4):993–1003CrossRefGoogle Scholar
  13. 13.
    Langer K, Balthasar S, Vogel V, Dinauer N, Briesen HV, Schubert D (2003) Int J Pharm 257(1):169–180CrossRefGoogle Scholar
  14. 14.
    Das RP, Singh BG, Kunwar A, Ramani MV, Subbaraju GV, Hassan PA, Priyadarsini KI (2017) Colloids Surf B 158:682–688CrossRefGoogle Scholar
  15. 15.
    Fanciullino R, Ciccolini J, Milano G (2013) Crit Rev Oncol Hematol 88(3):504–613CrossRefGoogle Scholar
  16. 16.
    Yan YI, Marriott G (2003) Curr Opin Chem Biol 7(5):635–640CrossRefGoogle Scholar
  17. 17.
    Ghisaidoobe AB, Chung SJ (2014) Int J Mol Sci 15(12):22518–22538CrossRefGoogle Scholar
  18. 18.
    Lee MM, Peterson BR (2016) ACS Omega 1(6):1266–1276CrossRefGoogle Scholar
  19. 19.
    Kocaadam B, Şanlier N (2017) Crit Rev Food Sci Nutr 57(13):2889–2895CrossRefGoogle Scholar
  20. 20.
    Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curr Neuropharmacol 11(4):338–378CrossRefGoogle Scholar
  21. 21.
    Barik A, Priyadarsini KI (2013) Spectrochim Acta A 105:267–272CrossRefGoogle Scholar
  22. 22.
    Banerjee M, Chakravarty D, Ballal A (2015) BMC Plant Biol 15(16):1–17Google Scholar
  23. 23.
    James NG, Jameson DM (2014) Methods Mol Biol 1076(3):29–42CrossRefGoogle Scholar
  24. 24.
    Li CVJ, Wowor AJ (2008) Methods Cell Biol 84(7):243–262Google Scholar
  25. 25.
    Fruhwirth GO, Ameer-Beg S, Cook R, Watson T, Tony N, Festy F (2010) Opt Express 18(11):11148–11158CrossRefGoogle Scholar
  26. 26.
    Walsh AJ, Sharick JT, Skala MC, Beier HT (2016) Biomed Opt Express 7(4):1385–1399CrossRefGoogle Scholar
  27. 27.
    Vakser IA (2014) Biophys J 107(8):1785–1793CrossRefGoogle Scholar
  28. 28.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  29. 29.
    Raut S, Chib R, Butler S, Borejdo J, Gryczynski Z, Gryczynskic I (2014) Methods Appl Fluoresc 2(3):1–8CrossRefGoogle Scholar
  30. 30.
    Sahoo B, Balaji J, Nag S, Kaushalya SK, Maiti S (2008) J Chem Phys 129(7):075103CrossRefGoogle Scholar
  31. 31.
    Lindgren M, Sörgjerd K, Hammarström P (2005) Biophys J 88(6):4200–4212CrossRefGoogle Scholar
  32. 32.
    Bong PH (2000) Bull Korean Chem Soc 21(1):81–86Google Scholar
  33. 33.
    Mariam J, Sivakami S, Dongre PM (2016) Drug Deliv 23(8):2668–2676Google Scholar
  34. 34.
    Shaikh SAM, Singh BG, Barik A, Ramani MV, Balaji NV, Subbaraju GV, Naik DB, Priyadarsini KI (2018) Spectrochim Acta A 199:394–402CrossRefGoogle Scholar
  35. 35.
    Shi JH, Pan DQ, Jiang M, Liu TT, Wang Q (2016) J Photochem Photobiol B 164(8):103–111CrossRefGoogle Scholar
  36. 36.
    Kastritis PL, Bonvin AMJJ, Soc JR (2013) Interface 10(79):20120835Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radiation & Photochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations